The arrangement of neurosecretory and catecholamine fibres in relation to the pituitary intermedia cells of the skate, Raja radiata

  • P. Meurling
  • A. Björklund


The innervation pattern of the intermediate lobe of the skate (Raja radiata) was studied with histological and fluorescence histochemical methods. Neurosecretory fibres, stained with i.a. pseudo-iso-cyanine, were found running in bundles in the central parts of the cell cords. They terminated partly around the perinuclear parts of the intermedia cells, partly around the apices of the cells close to the vascular walls.

A catecholamine innervation of the intermedia was also established. Catecholaminecontaining fibres with the appearance of nerve terminals were found around the intermedia cell apices close to the vessels. In some specimens, catecholamine fibres also seemed to terminate at the perinuclear parts of the cells.

Thus it is possible, judging solely from structural relations, that both the cell body (the synthesis pole) and the cell apex (the release pole) receive a dual innervation. Recent experimental evidence indicates that the release of MSH from the pars intermedia is controlled by catecholamine fibres, but as yet there is only structural evidence for a special control of hormone synthesis.


Hypophysis Intermediate Lobe Raja radiata Neurosecretory fibres Catecholamine fibres 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, A. A.: The pituitary control of chromatophores in the dogfish. Amer. Naturalist 73, 208–218 (1939).Google Scholar
  2. Bargmann, W.: Weitere Untersuchungen am neurosekretorischen Zwischenhirn-Hypophysen-system. Z. Zellforsch. 42, 247–272 (1955).Google Scholar
  3. —, Lindner, E., Andres, K. H.: Über Synapsen an endocrinen Epithelzellen und die Definition sekretorischer Neurone. Z. Zellforsch. 77, 282–298 (1967).Google Scholar
  4. Björklund, A.: Monoamine-containing fibres in the pituitary neuro-intermediate lobe of the pig and rat. Z. Zellforsch. 89, 573–589 (1968).Google Scholar
  5. —, Enemar, A., Falck, B.: Monoamines in the hypothalamo-hypophysial system of the mouse with special reference to the ontogenetic aspects. Z. Zellforsch. 89, 590–607 (1968).Google Scholar
  6. —, Falk, B.: An improvement of the histochemical fluorescence method for monoamines. Observation unvarying extractability of fluorophores in different nerve fibres. J. Histochem. Cytochem. 16, 717–720 (1968).Google Scholar
  7. —, Hromek, F., Owman, Ch., West, K. A.: Identification and terminal distribution of the tubero-hypophyseal monoamine fibre systems in the rat by means of stereotaxic and microspectrofluorimetric techniques. Brain Res. 17, 1–23 (1970).Google Scholar
  8. —, Rosengren, E.: Monoamines in the pituitary gland of the pig. Life Sci. 6, 2103–2110 (1967).Google Scholar
  9. Caspersson, T., Hillarp, N.- Å., Ritzén, M.: Fluorescence microspectrophotometry of cellular catecholamines and 5-hydroxytryptamine. Exp. Cell Res. 42, 415–428 (1966).Google Scholar
  10. Dahlström, A., Fuxe, K.: Monoamines and the pituitary gland. Acta endocr. (Kbh.) 51, 301–314 (1966).Google Scholar
  11. Enemar, A., Falck, B.: On the presence of adrenergic nerves in the pars intermedia of the frog Rana temporaria. Gen. comp. Endocr. 5, 577–583 (1965).Google Scholar
  12. —, Iturriza, F. C.: Adrenergic nerves in the pars intermedia of the pituitary in the toad, Bufo arenarum. Z. Zellforsch. 77, 325–330 (1967).Google Scholar
  13. Falck, B., Owman, Ch.: A detailed methodological description of the fluorescence method for the cellular demonstration of biogenic monoamines. Acta Univ. Lund. II, 7, 1–23 (1965).Google Scholar
  14. Howes, N. H.: A study of the histology of the pituitary gland of the skate. Quart. J. micr. Sci. 78, 637–651 (1936).Google Scholar
  15. Iturriza, F. C.: Monoamines and the control of the pars intermedia of the toad pituitary. Gen. comp. Endocr. 6, 19–25 (1966).Google Scholar
  16. —: The secretion of intermedin in autotransplants of pars intermedia growing in the anterior chamber of intact and sympathectomized eyes of the toad. Neuroendocrinology 2, 11–18 (1967).Google Scholar
  17. —: Further evidence for the blocking effect of catecholamines on the secretion of melanocyte-stimulating hormone in toads. Gen. comp. Endocr. 12, 417–426 (1969).Google Scholar
  18. Knowles, F.: Evidence for a dual control, by neurosecretion, of hormone synthesis and hormone release in the pituitary of the dogfish, Scylliorhinus stellaris. Phil. Trans. B 249, 435–456 (1965).Google Scholar
  19. —, Bern, H. A.: The function of neurosecretion in endocrine regulation. Nature (Lond.) 210, 271–272 (1966).Google Scholar
  20. Mellinger, J.: Etude histophysiologique du système hypothalamo-hypophysaire de Scyliorhinus caniculus (L.) en état de mélanodispersion permanente. Gen. comp. Endocr. 3, 26–45 (1963).Google Scholar
  21. Meurling, P.: The relations between neural and intermediate lobes in the pituitary of Squalus acanthias. Z. Zellforsch. 58, 51–69 (1962).Google Scholar
  22. —: Nerves of the neuro-intermediate lobe of Etmopterus spinax (Elasmobranchi). Z. Zellforsch. 61, 183–201 (1963).Google Scholar
  23. —: Observations of nerve-types in the hypophysial stem of Raja radiata. Acta Univ. Lund. II, 19, 1–20 (1967).Google Scholar
  24. —, Fremberg, M., Björklund, A.: Control of MSH release in the intermediate lobe of Raja radiata (Elasmobranchii). (Abstract.) Gen. comp. Endocrinol. 13, 3 (1969).Google Scholar
  25. Perks, A. M.: The neurohypophysis. In: Fish physiology, pp. 111–205. New York: Acad. Press 1969.Google Scholar
  26. Polenov, A. L., Belenki, M. A.: Electron microscope observations of neurosecretory elements in the neuro-intermediate lobe in skates. Nature (Lond.) 208, 94–95 (1965).Google Scholar
  27. Romeis, B.: Mikroskopische Technik. München-Wien: Oldenburg Verlag 1968.Google Scholar
  28. Scharrer, E.: Das Hypophysen-Zwischenhirnsystem von Scyllium stellare. Z. Zellforsch. 37, 196–204 (1952).Google Scholar
  29. Sterba, G.: Grundlagen des histochemischen und biochemischen Nachweis von Neurosekret (= Trägerprotein der Oxytozine) mit Pseudoisocyaninen. Acta histochem. (Jena) 17, 268–292 (1964).Google Scholar
  30. Waring, H.: Color change mechanisms of cold-blooded vertebrates. New York-London: Acad. Press 1963.Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • P. Meurling
    • 1
  • A. Björklund
    • 1
  1. 1.Departments of Zoology and HistologyUniversity of LundLundSweden

Personalised recommendations