Biological Cybernetics

, Volume 41, Issue 2, pp 101–117 | Cite as

Spectro-temporal representations and time-varying spectra of evoked potentials

A methodological investigation
  • J. P. C. de Weerd
  • J. I. Kap


Evoked potential waveforms are generally of a dynamic, transient character. Consequently, their spectral energy distribution cannot be adequately described by time-invariant representations, such as the power density spectrum. Obviously, aspectro-temporal description is needed. Appropriate means for obtaining such descriptions are discussed, on the basis of theoretical considerations concerning simultaneous time-frequency representations and methods ofshort-time spectral analysis. With reference to the “uncertainty principle”, particular attention is paid to time-bandwidth products of various filter types, used in relation with the latter technique. It is concluded that the method of bandpass filtering with proportional bandwidth filters, having cosine transfer functions, arises as a suitable solution in evoked potential analysis. The results of applying this method to somatosensory, visual, and brainstem auditory evoked potentials are presented.


Bandpass Filter Uncertainty Principle Spectral Energy Density Spectrum Power Density Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackroyd, M.H.: Instantaneous and time-varying spectra. An introduction. Radio Electron. Eng.39, 145–152 (1970)Google Scholar
  2. Ackroyd, M.H.: Short-time spectra and time-frequency energy distributions. J. Acoust. Soc. Am.50, 1229–1231 (1971)Google Scholar
  3. Ackroyd, M.H.: Time-dependent spectra: The unified approach. In: Signal processing. Proc. Nato Advanced Study Institute on Signal Processing. Griffiths, J.W.R., Stocklin, P.L., van Schooneveld, C. (eds.), pp. 1–9. London: Academic Press 1973Google Scholar
  4. Aertsen, A.M.H.J., Johannesma, P.I.M.: Spectro-temporal receptive fields of auditory neurons in the Grassfrog. I. Characterization of tonal and natural stimuli. Biol. Cybern.38, 223–234 (1980)Google Scholar
  5. Ba§ar, E., Ungan, P.: A component analysis and principles derived for the understanding of evoked potentials of the brain: studies in the Hippocampus. Kybernetik12, 133–140 (1973)Google Scholar
  6. Ba§ar, E., Gönder, A., Özesmi, ç., Ungan, P.: Dynamics of brain rhythmic and evoked potentials. II. Studies in the auditory pathway, reticular formation, and hippocampus during the waking stage. Biol. Cybern.20, 145–160 (1975)Google Scholar
  7. Coppola, R., Tabor, R., Buchsbaum, M.S.: Signal to noise ratio and response variability measurements in single trial evoked potentials. Electroencephalogr. Clin. Neurophysiol.44, 214–222 (1978)Google Scholar
  8. Cracco, R.Q., Cracco, J.B.: Visual evoked potential in man: early oscillatory potentials. Electroencephalogr. Clin. Neurophysiol.45, 731–739 (1978)Google Scholar
  9. Doyle, D.J.: Some comments on the use of Wiener filtering for the estimation of evoked potentials. Electroencephalogr. Clin. Neurophysiol.38, 533–534 (1975)Google Scholar
  10. Dugundji, J.: Envelopes and pre-envelopes of real waveforms. IRE Trans. Inf. Theory IT-4, 53–57 (1958)Google Scholar
  11. Fano, R.M.: Short-time autocorrelation functions and power spectra. J. Acoust. Soc. Am.22, 546–550 (1950)Google Scholar
  12. Gabor, D.: Theory of communication. J. I.E.E.93, 429–457 (1946)Google Scholar
  13. Hartwell, J.W., Erwin, C.W.: Evoked potential analysis: on-line signal optimization using a mini-computer. Electroencephalogr. Clin. Neurophysiol.41, 416–421 (1976)Google Scholar
  14. Jenkins, G.M., Watts, D.G.: Spectral analysis and its applications. San Francisco: Holden Day 1968Google Scholar
  15. Johannesma, P., Aertsen, A.: Neural image of sound in the Grassfrog. In: Hearing mechanisms and speech. Creutzfeld, O., Scheich, H., Schreiner, Chr. (eds.), pp. 79–86. Exp. Brain Res. Suppl. II (1979)Google Scholar
  16. Levin, M.J.: Instantaneous spectra and ambiguity functions. IEEE Trans. Inform. Theory IT-10, 95–97 (1964)Google Scholar
  17. Mark, W.D.: Spectral analysis of the convolution and filtering of non-stationary stochastic processes. J. Sound Vib.11, 19–63 (1970)Google Scholar
  18. Nogawa, T., Katayama, K., Tabata, Y., Kawahara, T., Ohshio, T.: Visual evoked potentials estimated by “Wiener filtering”. Electroencephalogr. Clin. Neurophysiol.35, 375–378 (1973)Google Scholar
  19. Page, C.H.: Instantaneous power spectra. J. Appl. Phys.23, 103–106 (1952)Google Scholar
  20. Papoulis, A.: The Fourier Integral and its applications, Chaps. 6 and 7. New York: McGraw-Hill 1962Google Scholar
  21. Picton, T.W., Hillyard, S.A., Krausz, H.I., Galambos, R.: Human auditory evoked potentials. I. Evaluation of components. Electroencephalogr. Clin. Neurophysiol.36, 179–190 (1974)Google Scholar
  22. Rihaczek, A.W.: Signal energy distribution in time and frequency. IEEE Trans Inform. Theory IT-14, 369–374 (1968)Google Scholar
  23. Rihaczek, A.W.: Principles of high resolution radar, Chap. 2. New York: McGraw-Hill 1969Google Scholar
  24. Sakrison, D.J.: Communication theory: transmission of waveforms and digital information, Chap. 5. New York: Wiley 1968Google Scholar
  25. Schroeder, M.R., Atal, B.S.: Generalized short-time power spectra and autocorrelation functions. J. Acoust. Soc. Am.34, 1679–1683 (1962)Google Scholar
  26. Sciarretta, G., Erculiani, P.: The Berg transform: a method for spectral evaluation of the dynamic properties of the EEG. In: Quantitative analysis of the EEG. Matejcek, M, Schenk, G.K. (eds.), pp. 487–496. Proc. 2nd Symp. Study Group for EEG-Methodology, Jongny sur Vevey 1975Google Scholar
  27. Turner, C.H.M.: On the concept of an instantaneous power spectrum, and its relationship to the autocorrelation function. J. Appl. Phys.25, 1347–1351 (1954)Google Scholar
  28. Van der Tweel, L.H., Estévez, O., Strackee, J.: Measurement of evoked potentials. In: Evoked potentials. Proc. Int. Evoked Potential Symp. Barber, C. (ed.) pp. 19–41. Falcon House: M.T.P. Press 1980Google Scholar
  29. Ungan, P., Ba§ar, E.: Comparison of Wiener filtering and selective averaging of evoked potentials. Electroencephalogr. Clin. Neurophysiol.40, 516–520 (1976)Google Scholar
  30. Walter, D.O.: The method of complex demodulation. Electroencephalogr. Clin. Neurophysiol. Suppl.27, 53–57 (1969)Google Scholar
  31. Walter, D.O.:A posteriori “Wiener filtering” of average evoked responses. Electroencephalogr. Clin. Neurophysiol. Suppl.27, 61–70 (1969)Google Scholar
  32. de Weerd, J.P.C., Martens, W.L.J., Colon, E.J.: Estimation of evoked potentials using time-varying Wiener filtering (abstract). Electroencephalogr. Clin. Neurophysiol.43, 476–477 (1977)Google Scholar
  33. de Weerd, J.P.C.:A posteriori time-varying filtering of averaged evoked potentials. I. Introduction and conceptual basis. Biol. Cybern. (in press) (1981)Google Scholar
  34. de Weerd, J.P.C., Kap, J.I.:A posteriori time-varying filtering of averaged evoked potentials. II. Mathematical and computational aspects. Biol. Cybern. (in press) (1981)Google Scholar
  35. Whalen, A.D.: Detection of signals in noise, Chap. 3. New York: Academic Press 1971Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • J. P. C. de Weerd
    • 1
  • J. I. Kap
    • 1
  1. 1.Radoud Hospital, Department of Clinical NeurophysiologyUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations