Advertisement

Biological Cybernetics

, Volume 41, Issue 2, pp 91–99 | Cite as

Is the landing response of the housefly (Musca) driven by motion of a flow field?

  • Christian Wehrhahn
  • Klaus Hausen
  • Johannes Zanker
Article

Abstract

The landing response of tethered flying housefliesMusca domestica elicited by motion of periodic gratings is analysed. The field of view of the compound eyes of a fly can be subdivided into a region of binocular overlap and a monocular region. In the monocular region the landing response is elicited by motion from front to back and suppressed by motion from back to front. The sensitivity to front to back motion in monocular flies (one eye covered with black paint) has a maximum at an angle 60°–80° laterally from the direction of flight in the equatorial plane. The maximum of the landing response to front to back motion as a function of the contrast frequencyw/λ is observed at around 8 Hz. In the region of binocular overlap of monocular flies the landing response can be elicited by back to front motion around the equatorial plane if a laterally positioned pattern is simulataneously moved from front to back. 40° above the equatorial plane in the binocular region the landing response in binocular flies is elicited by upward motion, 40° below the equatorial plane in the binocular region it is elicited by downward motion. The results are interpreted as an adaptation of the visual system of the fly to the perception of a flow field having its pole in the direction of flight.

Keywords

Flow Field Visual System Equatorial Plane Upward Motion Downward Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beersma, D.G.M., Stavenga, D.G., Kuiper, J.W.: Retinal lattice, visual field and binocularities in flies. Dependence on species and sex. J. Comp. Physiol.119, 207–220 (1977)Google Scholar
  2. Braitenberg, V., Taddei-Ferretti, C.: Landing reaction ofMusca domestica induced by visual stimuli. Naturwissenschaften53, 135–156 (1966)Google Scholar
  3. Braitenberg, V.: Ordnung und Orientierung der Elemente im Sehsystem der Fliege. Kybernetik7, 235–242 (1970)Google Scholar
  4. Collett, T.S.: Some operating rules for the optomotor system of a hoverfly during voluntary flight. J. Comp. Physiol.138, 271–282 (1980)Google Scholar
  5. Eckert, H.: Optomotorische Untersuchungen am visuellen System der StubenfliegeMusca domestica L. Kybernetik14, 1–23 (1973)Google Scholar
  6. Eckert, H.: Anatomie, Elektrophysiologie und funktionelle Bedeutung bewegungssensitiver Neurone in der Sehbahn von Dipteren. Habilitationsschrift, Ruhr-Universität Bochum (1979a)Google Scholar
  7. Eckert, H.: Orientation sensitivity of the visual movement detection system activating the landing response of the blowflies,Calliphora andPhaenicia: A behavioural investigation. Biol. Cybern.37, 235–247 (1980)Google Scholar
  8. Eckert, H., Fligge, B., Hamdorf, K.: Excitation and inhibition of the landing response of the blowfly,Calliphora. Naturwissenschaften66, 368 (1979)Google Scholar
  9. Eckert, H., Hamdorf, K.: Excitatory and inhibitory response components in the landing response of the blowfly,Calliphora erythrocephala. J. Comp. Physiol.138, 253–246 (1980)Google Scholar
  10. Fermi, G., Reichardt, W.: Optomotorische Reaktionen der FliegeMusca domestica. Abhängigkeit der Reaktion von der Wellenlänge, der Geschwindigkeit, dem Kontrast und der mittleren Leuchtdichte bewegter periodischer Muster. Kybernetik2, 15–28 (1963)Google Scholar
  11. Franceschini, N., Kirschfeld, K.: Etude optique in vivo des elements photorecepteurs dans l'oeil compose de Drosophila. Kybernetik8, 1–13 (1971)Google Scholar
  12. Götz, K.G.: Flight control in, Drosophila by visual perceptional of motion. Kybernetik4, 199–208 (1968)Google Scholar
  13. Goodman, Lesley, J.: The landing responses of insects. I. The landing J. exp. Biol.37, 854–878 (1960)Google Scholar
  14. Hausen, K.: Struktur, Funktion und Konnektivität bewegungsempfindlicher Interneurone im dritten optischen Neuropil der SchmeißfliegeCalliphora erythrocephala. Dissertation, Eberhard-Karls-Universität Tübingen, 1976aGoogle Scholar
  15. Hausen, K.: Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowflyCalliphora erythrocephala. Z. Naturforsch.31c, 629–233 (1976b)Google Scholar
  16. Pick, B.: Visual pattern discrimination as an element of the fly's orientation behaviour. Biol. Cybern.23, 171–180 (1976)Google Scholar
  17. Reichardt, W.: Musterinduzierte Flugorientierung. Verhaltens-Versuche an der FliegeMusca domestica. Naturwissenschaften60, 122–138 (1973)Google Scholar
  18. Reichardt, W., Poggio, T.: Visual control of orientation behaviour in the fly. I. A. quantitative analysis. Quart. Rev. Biophys.9, 311–375 (1973)Google Scholar
  19. Taddei-Ferretti, C., Fernandez Perez de Talens, A.: La reazione datteraggio dellaMusca domestica. Atti Conregno Gruppo Nazionale Cibernetica, Pisa, pp. 24–31 (1967)Google Scholar
  20. Taddei-Ferretti, C., Fernandez Perez de Talens, A.: Neurosistemi: Esperimenti sulla reazione datteraggio dellaMusca domestica. Atti I Congresso Nazionale Cibernetica, Casciana, Terme, pp. 268–278 (1971)Google Scholar
  21. Taddei-Ferretti, C., Fernandez Perez de Talens, A.: Conditions for an object moving in a flys visual field to be stimulating for landing. Atti II Congresso Nazionale Cibernetica, Casciana Terme, pp. 203–212 (1972) Taddei-Ferretti, C., Fernandez perez de Talens, A.: Landing reaction ofMusca domestica. IV. A. Monocular and binocular vision; B. Relationships between landing and optomotor reactions. Z. Naturforsch.28c, 579–592 (1973)Google Scholar
  22. Varju, D., Reichardt, W.: Übertragungseigenschaften im Auswertesystem für das Bewegungssehen. II. Z. Naturforsch.22b, 1343–1351 (1967)Google Scholar
  23. Wagner, H.: messung und Beschreibung von Landetrajektorien der Stubenfliege (Musca d.). Diplomarbeit, Eberhard-Karls-Universität, Tübingen 1980Google Scholar
  24. Wehrhahn C.: Flight torque and lift responses of the housefly (Musca domestica) to a single stripe moving in different parts of the visual field. Biol. Cybern.29, 237–247 (1978a)Google Scholar
  25. Wehrhahn, C.: The angular orientation of the movement detectors acting on the flight lift response in flies. Biol. Cybern.31, 169–173 (1978b)Google Scholar
  26. Wehrhahn, C.: Visual fixation and tracking in flies. In: Mathematical models in molecular and cellular biology. Segel, L.A. (ed.) Cambridge: Cambridge University Press 1980Google Scholar
  27. Wehrhahn, C., Hausen, K.: How is tracking and fixation accomplished in the nervous system of the fly? A behavioural analysis based on short time stimulation. Biol. Cybern.38, 179–187 (1980)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Christian Wehrhahn
    • 1
  • Klaus Hausen
    • 1
  • Johannes Zanker
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingenFRG

Personalised recommendations