Molecular and General Genetics MGG

, Volume 216, Issue 2–3, pp 303–314 | Cite as

Heme-deficient mutants of Salmonella typhimurium: Two genes required for ALA synthesis

  • Thomas Elliott
  • John R. Roth


The first step in heme biosynthesis is the formation of 5-aminolevulinic acid (ALA). We have isolated, mapped and characterized a large number of Salmonella typhimurium mutants auxotrophic for ALA. These mutants carry defects in either one of two genes, both required for ALA synthesis. The previously identified hemA gene maps at 35 min, and the hemL gene maps at 5 min on the S. typhimurium genetic map. Mutants in hemA and hemL are defective for aerobic and anaerobic respiration, and appear to be oxygen sensitive. The Hem phenotype of hemL mutants is less severe than that of hemA mutants. Although hemA and hemL mutants are deficient in heme synthesis, genetic tests indicate that they still synthesize two minor products of the heme pathway, siroheme and cobalamin (vitamin B12), under anaerobic conditions. In contrast, hemB, hemC and cysG mutants, blocked after ALA synthesis, make neither siroheme nor vitamin B12. Double mutants defective in both hemA and hemL also make siroheme. We suggest that hemA and hemL are required for one route of ALA synthesis and that a second, minor route of ALA synthesis may operate in S. typhimurium; this second pathway would be independent of the hemA and hemL functions.

Key words

Salmonella Heme ALA hemA hemL 















diethyl sulfate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bachmann BJ (1983) Linkage map of Escherichia coli K-12, Edn 7. Microbiol Rev 47:180–230Google Scholar
  2. Barrett EL, Chang GW (1979) Cysteine auxotrophs of Salmonella typhimurium which grow without cysteine in a hydrogen/carbon dioxide atmosphere. J Gen Microbiol 115:513–516Google Scholar
  3. Bcale SI (1978) δ-aminolevulinic acid in plants: its biosynthesis, regulation and role in plastid development. Annu Rev Plant Physiol 29:95–120Google Scholar
  4. Beljanski M, Beljanski M (1957) Sur la formation d'enzymes respiratoires chez un mutant d'Escherichia coli streptomycino-resistant et auxotrophe pour l'hemine. Ann Inst Pasteur 92:396–412Google Scholar
  5. Berkowitz D, Hushon JM, Whitfield HJ, Roth J, Ames BN (1968) Procedure for identifying nonsense mutations. J Bacteriol 96:215–220Google Scholar
  6. Bochner BR, Huang H-C, Schieven GL, Ames BN (1980) Positive selection for loss of tetracycline resistance. J Bacteriol 143:926–933Google Scholar
  7. Burnham BF (1969) Metabolism of porphyrins and corrinoids. In: Greenberg DM (ed) Metabolic pathways, vol III. Amino acids and tetrapyrroles, 3rd edn. Academic Press, pp 403–537Google Scholar
  8. Burnham BF, Lascelles J (1963) Control of porphyrin synthesis through a negative feedback mechanism. Studies with preparations of δ-aminolaevulate synthetase and δ-aminolaevulate dehydratase from Rhodopseudomonas spheroides. Biochem J 87:462–472Google Scholar
  9. Casadaban MJ, Cohen SN (1979) Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci USA 76:4530–4533Google Scholar
  10. Castelfranco PA, Beale SI (1983) Chlorophyll biosynthesis: recent advances and areas of current interest. Annu Rev Plant Physiol 34:241–278Google Scholar
  11. Castilho BA, Olfson P, Casadaban MJ (1984) Plasmid insertion mutagenesis and lac gene fusion with mini-Mu bacteriophage transposons. J Bacteriol 158:488–495Google Scholar
  12. Cauthen SE, Foster MA, Woods DD (1966) Methionine synthesis by extracts of Salmonella typhimurium. Biochem J 98:630–635Google Scholar
  13. Chang GW, Chang JT (1975) Evidence for the B12-dependent enzyme ethanclamine deaminase in Salmonella. Nature 254:150–151Google Scholar
  14. Chumley FG, Roth JR (1980) Rearrangement of the bacterial chromosome using Tn10 as a region of homology. Genetics 94:1–14Google Scholar
  15. Chumley FG, Menzel R, Roth JR (1979) Hfr formation directed by TN 10. Genetics 91:639–655Google Scholar
  16. Clairborne A, Fridovich I (1979) Purification of the o-dianisidine peroxidase from Escherichia coli B. J Biol Chem 254:4245–4252Google Scholar
  17. Cox R, Charles HP (1973) Porphyrin-accumulating mutants of Escherichia coli. J Bacteriol 113:122–132Google Scholar
  18. Creaghan IT, Guest JR (1978) Succinate dehydrogenase-dependent nutritional requirement for succinate in mutants of Escherichia coli K 12. J Gen Microbiol 107:1–13Google Scholar
  19. Davis RW, Botstein D, Roth JR (1980) Advanced bacterial genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  20. Demerec M, Adelberg EA, Clark AJ, Hartman PE (1966) A proposal for a uniform nomenclature in bacterial genetics. Genetics 54:61–76Google Scholar
  21. Desrochers M, Peloquin L, Sasarman A. 1978 Mapping of the hemE locus in Salmonella typhimurium. J Bacteriol 135:1151–1153Google Scholar
  22. Di Girolamo PM, Kadner RJ, Bradbeer C (1971) Isolation of vitamin B12 transport mutants of Escherichia coli. J Bacteriol 106:751–757Google Scholar
  23. Elliott T, Roth JR (1988) Characterization of Tn 10 d-Cam: A transposition-defective Tn 10 specifying chloramphenicol resistance. Mol Gen Genet 213:332–338Google Scholar
  24. Escalante-Semerena JC, Roth JR (1987) Regulation of cobalamin biosynthetic operons in Salmonella typhimurium. J Bacteriol 169:2251–2258Google Scholar
  25. Fanica-Gaignier M, Clement-Metral J (1973) 5-aminolevulinic acid synthetase of Rhodopseudomonas spheroides Y. Purification and some properties. Eur J Biochem 40:13–18Google Scholar
  26. Friedmann HC, Thauer RK (1986) Ribonuclease-sensitive δ-aminolevulinic acid formation from glutamate in cell extracts of Methanobacterium thermoautotrophicum. FEBS Lett 207:84–88Google Scholar
  27. Furhop J-H, Smith KM (1975) In: Smith KM (ed) Porphyrins and metalloproteins. Elsevier, New York pp 806–807Google Scholar
  28. Gibson KD, Laver WK, Neuberger A (1958) Initial stages in the biosynthesis of porphyrins. 2. The formation of δ-aminolaevulinic acid from glycine and succinyl-coenzyme A by particles from chicken erythrocytes. Biochem J 70:71–81Google Scholar
  29. Gollub EG, Liu K-P, Dayan J, Adlersberg M, Sprinson DB (1977) Yeast mutants deficient in heme biosynthesis and a heme mutant additionally blocked in cyclization of 2,3-oxidosqualene. J Biol Chem 252:2846–2854Google Scholar
  30. Guerinot ML, Chelm BK (1986) Bacterial δ-aminolevulinic acid synthase activity is not essential for leghemoglobin formation in the soybean/Bradyrhizobium japonicum symbiosis. Proc Natl Acad Sci USA 83:1837–1841Google Scholar
  31. Hino S, Ishida A (1973) Effect of oxygen on heme and cytochrome content in some facultative bacteria. Enzyme 16:42–49Google Scholar
  32. Hong J-S, Ames BN (1971) Localized mutagenesis of any specific small region of the bacterial chromosome. Proc Natl Acad Sci USA 68:3158–3162Google Scholar
  33. Hove-Jensen B (1985) Cloning and characterization of the prs gene encoding phosphoribosylpyrophosphate synthetase of Escherichia coli. Mol Gen Genet 201:269–276Google Scholar
  34. Huang D-D, Wang W-Y, Gough SP, Kannangara CG (1984) δ-aminolevulinic acid-synthesizing enzymes need and RNA moiety for activity. Science 225:1482–1484Google Scholar
  35. Hughes KT, Roth JR (1984) Conditionally transposition-defective derivative of Mu d 1 (Amp Lac). J Bacteriol 159:130–137Google Scholar
  36. Hughes KT, Roth JR (1985) Directed formation of deletions and duplications using Mud (Ap, lac). Genetics 109:263–282Google Scholar
  37. Hughes KT, Roth JR (1988) Transitory cis complementation: a method for providing transposition functions to defective transposons. Genetics 119:9–12Google Scholar
  38. Ingledew WJ, Poole RK (1984) The respiratory chains of Escherichia coli. Microbiol Rev 48:222–271Google Scholar
  39. Ishida A, Hino S (1972) Effect of oxygen on cytochrome pattern and heme synthesis in Escherichia coli. J Gen Appl Microbiol Tokyo 18:225–237Google Scholar
  40. Jacobs NJ (1974) Biosynthesis of heme. In: Neilands JB (ed) Microbial iron metabolism. A comprehensive treatise. Academic Press, pp 125–148Google Scholar
  41. Janzer JJ, Stan-Lotter H, Sanderson KE (1981) Isolation and characterization of hemin-permeable, envelope-defective mutants of Salmonella typhimurium. Can J Microbiol 27:226–237Google Scholar
  42. Jeter R, Escalante-Semerena JC, Roof D, Olivera B, Roth J (1987) Synthesis and use of vitamin B12 in Salmonella and E. coli. In: Ingraham JL, Low KB, Neidhardt FC, Magasanik B, Schaechter M and Umbarger HE (eds) Escherichia coli and Salmonella typhimurium. Cellular and molecular biology, vol 1. American Society for Microbiology. Washington, DC, pp 551–556Google Scholar
  43. Jeter RM, Olivera BM, Roth JR (1984) Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anacrobic growth conditions. J Bacteriol 159:206–213Google Scholar
  44. Kikuchi G, Kumar A, Talmage P, Shemin D (1958) The enzymatic synthesis of δ-aminolevulinic acid. J Biol Chem 233:1214–1219Google Scholar
  45. Kranz RG, Gennis RB (1983) Immunological characterization of the cytochrome o terminal oxidase from Escherichia coli. J Biol Chem 258:10614–10621Google Scholar
  46. Kredich NM (1983) Regulation of cysteine biosynthesis in Escherichia coli and Salmonella typhimurium. In: Herrmann KM, Somerville RL (eds) Amino acids: biosynthesis and genetic regulation. Addison Wesley, Reading, MA, pp 115–132Google Scholar
  47. Lascelles J (1978) Regulation of pyrrole synthesis. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum Press, New York, pp 795–808Google Scholar
  48. Lascelles J, Altshuler T (1969) Mutant strains of Rhodopseudomonas spheroides lacking δ-aminolevulinate synthase: growth, heme, and bacteriochlorophyll synthesis. J Bacteriol 98:721–727Google Scholar
  49. Leong SA, Ditta GS, Helinski DR (1982) Heme biosynthesis in Rhizobium. Identification of a cloned gene coding for δ-aminolevulinate synthase from Rhizobium meliloti. J Biol Chem 257:8724–8730Google Scholar
  50. Maloy SR, Nunn WD (1981) Selection for loss of tetracycline resistance by Escherichia coli. J Bacteriol 145:1110–1112Google Scholar
  51. McConville ML, Charles HP (1979a) Mutants of Escherichia coli K 12 accumulating porphobilinogen: a new locus, hemC. J Gen Microbiol 111:193–200Google Scholar
  52. McConville ML, Charles HP (1979b) Isolation of haemin-requiring mutants of Escherichia coli K12. J Gen Microbiol 113:155–164Google Scholar
  53. Neuberger A, Scott JJ (1953) Aminolaevulinic acid and porphyrin biosynthesis. Nature 172:1093–1094Google Scholar
  54. Nishioka Y, Demerec M, Eisenstark A (1967) Genetic analysis of aromatic mutants of Salmonella typhimurium. Genetics 56:341–351Google Scholar
  55. Powell KA, Cox R, McConville M, Charles HP (1973) Mutations affecting porphyrin biosynthesis in Escherichia coli. Enzyme 16:65–73Google Scholar
  56. Richmond MH, Maaloe O (1962) The rate of growth of Salmonella typhimurium with individual carbon sources related to glucose metabolism or to the Krebs cycle. J Gen Microbiol 27:285–297Google Scholar
  57. Sanderson KE, Roth JR (1983) Linkage map of Salmonella typhimurium, edn VI Microbiol Rev 47:410–453Google Scholar
  58. Sasarman A, Surdeanu M, Horodniceanu T (1968) Locus determining the synthesis of δ-aminolevulinic acid in Escherichia coli K-12. J Bacteriol 96:1882–1884Google Scholar
  59. Sasarman A, Sanderson KE, Surdeanu M, Sonea S (1970) Hemindeficient mutants of Salmonella typhimurium. J Bacteriol 102:531–536Google Scholar
  60. Sasarman A, Desrochers M, Sonea S, Sanderson KE, Surdeanu M (1976) Porphobilinogen-accumulating mutants of Salmonella typhimurium LT2. J Gen Microbiol 94:359–366Google Scholar
  61. Sasarman A, Nepveu A, Echelard Y, Dymetryszyn J, Drolet M, Goyer C (1987) Molecular cloning and sequencing of the hemD gene of Escherichia coli and preliminary data on the Uro operon. J Bacteriol 169:4257–4262Google Scholar
  62. Schmid MB, Roth JR (1983) Genetic methods for analysis and manipulation of inversion mutations in bacteria. Genetics 105:517–537Google Scholar
  63. Schon A, Krupp G, Gough S, Berry-Lowe S, Kannangara CG, Soll D (1986) The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Science 233:281–284Google Scholar
  64. Shemin D, Russell CS (1953) δ-aminolevulinic acid, its role in biosynthesis of porphyrins and purines. J Am Chem Soc 75:4873–4874Google Scholar
  65. Siegel LM, Murphy MJ, Kamin H, (1973) Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. I. The Escherichia coli hemoflavoprotein: molecular parameters and prosthetic groups. J Biol Chem 248:251–264Google Scholar
  66. Tait GH (1968) General aspects of haem synthesis. In: Goodwin TW (ed) Porphyrins and related compounds. Biochem Soc Symp 28:19–34Google Scholar
  67. Tait GH (1973) Aminolaevulinate synthetase of Micrococcus denitrificans. Purification and properties of the enzyme, and the affect of growth conditions on the enzyme activity in cells. Biochem J 131:389–403Google Scholar
  68. Tuboi S, Kim HJ, Kikuchi G (1970) Occurrence and properties of two types of δ-aminolevulinate synthetase in Rhodopseudomonas spheroides. Arch Biochem Biophys 138:147–154Google Scholar
  69. Vogel HJ, Bonner DM (1956) Acetylornithase of Escherichia coli: partial purification and some properties. J Biol Chem 218:97–106Google Scholar
  70. Wang W-Y, Huang D-D, Stachon D, Gough SP, Kannangara CG (1984) Purification, characterization and fractionation of the δ-aminolevulinic acid synthesizing enzymes from light-grown Chlamydomonas reinhardtii cells. Plant Physiol 74:569–379Google Scholar
  71. Warnick GR, Burnham BR (1971) Regulation of porphyrin biosynthesis. Purification and characterization of δ-aminolevulinic acid synthase. J Biol Chem 246:6880–6885Google Scholar
  72. Way JC, Davis MA, Morisato D, Roberts DE, Kleckner N (1984) New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene 32:369–379Google Scholar
  73. Winston F, Botstein D, Miller JH (1979) Characterization of amber and ochre suppressors in Salmonella typhimurium. J Bacteriol 137:433–439Google Scholar
  74. Wright MS, Cardin RD, Biel AJ (1987) Isolation and characterization of an aminolevulinate-requiring Rhodobacter capsulatus mutant. J Bacteriol 169:961–966Google Scholar
  75. Wulff DL (1967) δ-aminolevulinic acid-requiring mutant from Escherichia coli. J Bacteriol 93:1473–1474Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Thomas Elliott
    • 1
  • John R. Roth
    • 1
  1. 1.Department of BiologyUniversity of UtahSalt Lake CityUSA

Personalised recommendations