Probability Theory and Related Fields

, Volume 77, Issue 2, pp 167–178 | Cite as

On a law of the iterated logarithm for sums mod 1 with application to Benford's law

  • Peter Schatte
Article

Summary

Let Zn be the sum mod 1 of n i.i.d.r.v. and let 1[0,x](·) be the indicator function of the interval [0, x]. Then the sequence 1[0,x](Zn) does not converge for any x. But if arithmetic means are applied then under suitable suppositions convergence with probability one is obtained for all x as well-known. In the present paper the rate of this convergence is shown to be of order n-1/2 (loglogn)1/2 by using estimates of the remainder term in the CLT for m-dependent r.v.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barlow J.L., Bareiss, E.H.: On roundoff error distributions in floating point and logarithmic arithmetic. Computing 34, 325–347 (1985)Google Scholar
  2. Benford F.: The law of anomalous numbers. Proc. Amer. Phil. Soc. 78, 552–572 (1938)Google Scholar
  3. Bhattacharya R.N.: Speed of convergence of the n-fold convolution of a probability measure on a compact group. Z. Wahrscheinlichkeitstheor. Verw. Geb. 25, 1–10 (1972)Google Scholar
  4. Chung K.L.: A course in probability theory. New York-London: Academic Press 1974Google Scholar
  5. Egorov V.A.: Some limit theorems for m-dependent random variables (Russian). Liet. mat. rink. 10, 51–59 (1970)Google Scholar
  6. Heinrich L.: A method for the derivation of limit theorems for sums of m-dependent random variables. Z. Wahrscheinlichkeitstheor. Verw. Geb. 501–515 (1982)Google Scholar
  7. Herrmann H.: Konvergenzgeschwindigkeit der Folge der Faltungspotenzen eines Wahrscheinlichkeitsmaßes auf einer kompakten topologischen Gruppe. Math. Nachr. 104, 49–59 (1981)Google Scholar
  8. Holewijn P.J.: On the uniform distribution of random variables. Z. Wahrscheinlichkeitstheor. Verw. Geb. 14, 89–92 (1969)Google Scholar
  9. Kuipers L., Niederreiter H.: Uniform distribution of sequences. New York: Wiley 1974Google Scholar
  10. Loynes R.M.: Some results in the probability theory of asymptotic uniform distribution modulo 1. Z. Wahrscheinlichkeitstheor. Verw. Geb. 26, 33–41 (1973)Google Scholar
  11. Petrov V.V.: Sums of independent random variables. Berlin Heidelberg New York: Springer 1975Google Scholar
  12. Philipp W.: A functional law of the iterated logarithm for empirical distribution functions of weakly dependent random variables. Ann. Probab. 5, 319–350 (1977)Google Scholar
  13. Raimi R.A.: The first digit problem. Amer. Math. Mon. 83, 521–538 (1976)Google Scholar
  14. Robbins H.: On the equidistribution of sums of independent random variables. Proc. Amer. Math. Soc. 4, 786–799 (1953)Google Scholar
  15. Schatte P.: Zur Verteilung der Mantisse in der Gleitkommadarstellung einer Zufallsgröße. Zeitschr. Angew. Math. Mech. 83, 553–565 (1973)Google Scholar
  16. Schatte P.: On the asymptotic uniform distribution of sums reduced mod 1. Math. Nachr. 115, 275–281 (1984)Google Scholar
  17. Schatte P.: The asymptotic uniform distribution modulo 1 of cumulative processes. Optimization 16, 783–786 (1985)Google Scholar
  18. Schatte P.: On the asymptotic uniform distribution of the n-fold convolution mod 1 of a lattice distribution. Math. Nachr. 128, 233–241 (1986)Google Scholar
  19. Schatte P.: On the asymptotic behaviour of the mantissa distributions of sums. J. Inf. Process. Cybern. ElK. 23, 353–360 (1987)Google Scholar
  20. Schatte P.: On the almost sure convergence of floating-point mantissas and Benford's law. Math. Nachr. 135 (1988)Google Scholar
  21. Schatte P.: On mantissa distributions in computing and Benford's law. J. Inf. Process. Cybern. ElK (in press)Google Scholar
  22. Schmidt V.: On the asymptotic uniform distribution of stochastic clearing processes. Optimization 17, 125–134 (1986)Google Scholar
  23. Shergin V.V.: On the speed of convergence in the central limit theorem for m-dependent random variables (Russian). Teor. Verotn. Primen. 24, 781–794 (1979)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Peter Schatte
    • 1
  1. 1.Sektion Mathematik der Bergakademie FreibergFreibergGerman Democratic Republic

Personalised recommendations