Advertisement

Molecular and General Genetics MGG

, Volume 119, Issue 3, pp 191–206 | Cite as

Two kinds of insertions in bacterial genes

  • Heinz-Josef Hirsch
  • Peter Starlinger
  • Philippe Brachet
Article

Summary

Six insertion mutations in the gal operon of E. coli and two insertion mutations in the xycIIOP operon of bacteriophage lambda were tested for homology by annealing separated strands of lambda dgal DNA carrying the insertions, and inspection in the electron microscope.

Class 1, consisting of the gal mutations OP 128, OP 141, T-N 116, OP 306, T-N 102 and the lambda mutation r14 are about 800 nucleotide pairs long, completely homologous and not circularly permuted. The first three insertions of class 1 are integrated in one direction with respect to the adjacent genes, the other three in the opposite direction. The DNA inserted in this class of mutations is called IS1.

Class 2 consists of the gal insertion OP 308 and the lambda insertion r32. They are about 1400 nucleotide pairs long. The two are integrated in opposite direction with respect to the chromosome of λdgal. The DNA in insertion mutations of class 2 will be called IS 2. IS1 and IS2 do not share any detectable homology.

These data are supported by cross-hybridization experiments using RNA transcribed in vitro from lambda dgal or lambda DNA carrying one insertion and DNA carrying either the same or a different insertion.

Similar results were obtained by Malamy, Fiandt, Szybalski and Fiandt, Szybalski, Malamy (accompanying papers).

Keywords

Electron Microscope Nucleotide Opposite Direction Bacterial Gene Insertion Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brachet, P., Eisen, H., Rambach, A.: Mutations of coliphage λ affecting the expression of replicative functions P and O. Molec. gen. Genet. 108, 266 (1970).Google Scholar
  2. Curtis, R. III, Stallions, D. R.: Probability of F integration and frequency of stable Hfr donors in F+ populations of Escherichia coli K12. Genetics 63, 27 (1969).Google Scholar
  3. Dove, W. F.: Strains of phage lambda in current use. Virology 38, 349 (1969).Google Scholar
  4. Fiandt, M., Hradecna, A., Lozeron, H. A., Szybalski, W.: Electron micrographic mapping of deletions, insertions, inversions, and homologies in the DNAs of coliphages lambda and phi 80. The bacteriophage lambda (A. D. Hershey, ed.) p. 329–354. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory, 1971.Google Scholar
  5. Fiandt, M., Szybalski, W., Malamy, M. H.: Polar mutations in lac, gal and phage λ consist of a few DNA sequences inserted with either orientation. Molec. gen. Genet. 119, 223–231 (1972).Google Scholar
  6. Hirsch, H. J., Saedler, H., Starlinger, P.: Insertion mutation in the control region of the gal operon of E. coli. II. Physical characterization of the mutations. Molec. gen. Genet. 115, 266 (1972).Google Scholar
  7. Inman, R. B., Schnös, M.: Partial denaturation of thymine- and 5-bromouracil-containing λ DNA in alkali. J. molec. Biol. 49, 93 (1970).Google Scholar
  8. Jordan, E., Saedler, H., Starlinger, P.: Strong-polar mutations in the transferase gene of the galactose operon in E. coli. Molec. gen Genet. 100, 296 (1967).Google Scholar
  9. Jordan, E., Saedler, H., Starlinger, P.: 0° and strong polar mutations in the gal operon are insertions. Molec. gen. Genet. 102, 353 (1968).Google Scholar
  10. Kelley, T. J., Smith, H. O.: A restriction enzyme for Hemophilus influenzae. II Base sequence of the recognition site. J. molec. Biol. 51, 393–409 (1970).Google Scholar
  11. Kleinschmidt, A., Zahn, R. K.: Über Desoxyribonukleinsäure-Molekel in Protein Mischfilmen. Z. Naturforsch. 146, 770 (1959).Google Scholar
  12. Lang, D., Bujard, H., Wolff, B., Russel, D.: Electron microscopy of size and shape of viral DNA in solution of different ionic strength. J. molec. Biol. 23, 163 (1967).Google Scholar
  13. Malamy, M. H.: Some properties of insertion mutations in the lac operon. The lactose operon, ed. by J. R. Beckwith and D. Zipser, p. 359. Cold Spring Harbor Laboratory, 1970.Google Scholar
  14. Malamy, M. H., Fiandt, M., Szybalski, W.: Electron microscopy of polar insertions in the lac operon of Escherichia coli. Molec. gen. Genet. 119, 207–222 (1972).Google Scholar
  15. Michaelis, G., Saedler, H., Venkov, P., Starlinger, P.: Two insertions in the galactose operon having different sizes but homologous DNA sequences. Molec. gen. Genet. 104, 371 (1969).Google Scholar
  16. Sadler, J. R., Smith, T. F.: Mapping of the lactose operator. M. molec. Biol. 62, 139–169 (1971).Google Scholar
  17. Saedler, H., Besemer, J., Kemper, B., Rosenwirth, B., Starlinger, P.: Insertion mutations in the control region of the gal operon of E. coli. I. Biological characterization of the mutations. Molec. gen. Genet. 115, 258 (1972).Google Scholar
  18. Shapiro, J. A.: Mutations caused by the insertion of genetic material into the galactose operon of Escherichia coli. J. molec. Biol. 40, 93 (1969).Google Scholar
  19. Shapiro, J., Machattie, L., Eron, L., Ihler, G., Ippen, K., Beckwith, J.: Isolation of pure lac operon DNA. Nature (Lond.) 224, 768 (1969).Google Scholar
  20. Starlinger, P., Saedler, H.: Insertion mutations in microorganisms. Biochimie 54, 177 (1972).Google Scholar
  21. Taylor, A.: Bacteriophage-induced mutations in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 50, 1043–1051 (1963).Google Scholar
  22. Westmoreland, B. C., Szybalski, W., Ris, H.: Mapping of delections and substitutions in heteroduplex DNA molecules of bacteriophage lambda by electron microscopy. Science 163, 1343 (1969).Google Scholar
  23. Wetekam, W., Staack, K., Ehring, R.: Relief of polarity in DNA-dependent cell-free synthesis of enzymes of the galactose operon of Escherichia coli. Molec. gen. Genet. 116, 258–276 (1972).Google Scholar
  24. Wilson, D. B., Hogness, D. S.: The enzymes of the galactose operon in E. coli. III. The size and composition of galactokinase J. biol. Chem. 244, 2137 (1969).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Heinz-Josef Hirsch
    • 1
    • 2
    • 3
  • Peter Starlinger
    • 1
    • 2
  • Philippe Brachet
    • 1
    • 2
  1. 1.Institut für Genetik der Universität zu KölnKölnGermany
  2. 2.Institut PasteurParis
  3. 3.Peter StarlingerKöln-LindenthalFederal Republic of Germany

Personalised recommendations