Cell and Tissue Research

, Volume 273, Issue 3, pp 583–598 | Cite as

The embryonic development of the Drosophila visual system

  • Patricia Green
  • Amelia Y. Hartenstein
  • Volker Hartenstein
Article

Abstract

We have used electron-microscopic studies, bromodeoxyuridine (BrdU) incorporation and antibody labeling to characterize the development of the Drosophila larval photoreceptor (or Bolwig's) organ and the optic lobe, and have investigated the role of Notch in the development of both. The optic lobe and Bolwig's organ develop by invagination from the posterior procephalic region. After cells in this region undergo four postblastoderm divisions, a total of approximately 85 cells invaginate. The optic lobe invagination loses contact with the outer surface of the embryo and forms an epithelial vesicle attached to the brain. Bolwig's organ arises from the ventralmost portion of the optic lobe invagination, but does not become incorporated in the optic lobe; instead, its 12 cells remain in the head epidermis until late in embryogenesis when they move in conjunction with head involution to reach their final position alongside the pharynx. Early, before head involution, the cells of Bolwig's organ form a superficial group of 7 cells arranged in a ‘rosette’ pattern and a deep group of 5 cells. Later, all neurons move out of the surface epithelium. Unlike adult photoreceptors, they do not form rhabdomeres; instead, they produce multiple, branched processes, which presumably carry the photopigment. Notch is essential for two aspects of the early development of the visual system. First, it delimits the number of cells incorporated into Bolwig's organ. Second, it is required for the maintenance of the epithelial character of the optic lobe cells during and after its invagination.

Key words

Visual system Photoreceptors Optic lobe Bolwig's organ Development, ontogenetic Drosophila sp. (Insecta) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artavanis-Tsakonas S (1988) The molecular biology of the Notch locus and the fine tuning of differentiation in Drosophila. Trends Genet 4:95–100Google Scholar
  2. Bier E, Vaessin H, Shepherd S, Lee K, McCall K, Barbel S, Ackerman L, Carretto R, Uemura T, Grell E, Jan LY, Jan YN (1989) Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. Genes Dev 3:1273–1287Google Scholar
  3. Bodmer R, Carretto R, Jan YN (1989) Neurogenesis of the peripheral nervous system in Drosophila embryos: DNA replication patterns and cell lineages. Neuron 3:21–32Google Scholar
  4. Bolwig N (1946) Senses and sense organs of the anterior end of the house fly larvae. Vidensk Med Dansk Naturh Foren 109:81–217Google Scholar
  5. Cagan RL, Ready DF (1989) Notch is required for successive cell decisions in the developing Drosophila retina. Genes Dev 3:1099–1112Google Scholar
  6. Campos-Ortega JA (1988) Cellular interactions during early neurogenesis of Drosophila melanogaster. Trends Neurosci 11:400–405Google Scholar
  7. Campos-Ortega JA, Hartenstein V (1985a) Development of the nervous system. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry, and pharmacology, vol 5. Pergamon Press, Oxford, pp 49–85Google Scholar
  8. Campos-Ortega JA, Hartenstein V (1985b) The embryonic development of Drosophila melanogaster. Springer, BerlinGoogle Scholar
  9. Chen TY (1929) On the development of imaginal buds in normal and mutant Drosophila melanogaster. J Morphol 47:135–199Google Scholar
  10. Copenhaver PF, Taghert PH (1990) Neurogenesis in the insect enteric nervous system: generation of premigratory neurons from an epithelial placode. Development 109:17–28Google Scholar
  11. Corbin V, Michelson AM, Abmayr SM, Neel B, Alcamo E, Maniatis T, Young MW (1991) A role for the Drosophila neurogenic genes in mesoderm differentiation. Cell 67:311–323Google Scholar
  12. Ellsworth JK (1933) The photoreceptive organs of fleshfly larva, Lucilia sericata (Meigen): an experimental and anatomical study. Ann Entomol Soc Am 26:200–215Google Scholar
  13. Fehon RG, Johansen K, Rebay I, Artavanis-Tsakonas S (1991) Complex cellular and subcellular regulation of Notch expression during embryonic and imaginal development of Drosophila: implications for Notch function. J Cell Biol 113:657–669Google Scholar
  14. Hartenstein V (1988) Development of Drosophila larval sensory organs: spatiotemporal pattern of sensory neurones, peripheral axonal pathways and sensilla differentiation. Development 102:869–886Google Scholar
  15. Hartenstein V, Campos-Ortega JA (1984) Early neurogenesis in wildtype Drosophila melanogaster. Rouxs Arch Dev Biol 193:308–325Google Scholar
  16. Hartenstein V, Campos-Ortega JA (1986) The peripheral nervous system of mutants of early neurogenesis in Drosophila melanogaster. Rouxs Arch Dev Biol 195:210–221Google Scholar
  17. Hartenstein V, Jan YN (1992) Studying Drosophila embryogenesis with PlacZ enhancer trap lines. Rouxs Arch Dev Biol 201:194–220Google Scholar
  18. Hartenstein V, Posakony JW (1990) A dual function of the Notch gene in Drosophila sensillum development. Dev Biol 142:13–30Google Scholar
  19. Hartenstein V, Hartenstein A, Rugendorff AE, Green P (1991) The embryonic development of the Drosophila visual system (abstract). 32nd Annual Drosophila Research Conference, ChicagoGoogle Scholar
  20. Hartenstein AY, Rugendorff AE, Tepass U, Hartenstein V (1992) The function of the neurogenic genes during epithelial development in the Drosophila embryo. Development 116:1203–1220Google Scholar
  21. Heitzler P, Simpson P (1991) The choice of cell fate in the epidermis of Drosophila. Cell 64:1083–1092Google Scholar
  22. Hewitt CG (1914) The house-fly (Musca domestica)Google Scholar
  23. Hofbauer A (1979) Die Entwicklung der optischen Ganglien bei Drosophila melanogaster. Inaugural-Dissertation, University of Freiburg i.Br.Google Scholar
  24. Hofbauer A, Campos-Ortega JA (1990) Proliferation pattern and early differentiation of the optic lobes in Drosophila melanogaster. Rouxs Arch Dev Biol 198:264–274Google Scholar
  25. Hoppe PE, Greenspan RJ (1990) The Notch locus of Drosophila is required in epidermal cells for epidermal development. Development 109:875–885Google Scholar
  26. Jürgens G, Lehmann R, Schardin M, Nüsslein-Volhard C (1986) Segmental organisation of the head in the embryo of Drosophila melanogaster. Rouxs Arch Dev Biol 195:359–377Google Scholar
  27. Kidd S, Kelley MR, Young MW (1986) Sequence of the Notch locus of Drosophila melanogaster: relationship of the encoded protein to mammalian clotting and growth factors. Mol Cell Biol 6:3094–3108Google Scholar
  28. Kidd S, Baylies MK, Gasic GP, Young MW (1989) Structure and distribution of the Notch protein in developing Drosophila. Genes Dev 3:1113–1129Google Scholar
  29. Lehmann R, Jimenez F, Dietrich U, Campos-Ortega JA (1983) On the phenotype and development of mutants of early neurogenesis in Drosophila melanogaster. Rouxs Arch Dev Biol 192:62–74Google Scholar
  30. Lindsley DL, Grell EH (1968) Genetic variations of Drosophila melanogaster. (Publication no 627) Carnegie Institution of WashingtonGoogle Scholar
  31. Madhavan MM, Schneiderman HA (1977) Histological analysis of the dynamics of growth of imaginal discs and histoblast nests during larval development of Drosophila melanogaster. Rouxs Arch Dev Biol 183:269–305Google Scholar
  32. Panayotou G, End P, Aumailley M, Timpl R, Engel J (1989) Domains of laminin with growth-factor activity. Cell 56:93–101Google Scholar
  33. Paulus HF (1989) Das Homologisieren in der Feinstrukturforschung: das Bolwig Organ der höheren Dipteren und seine Homologisierung mit Stemmata und Ommatidien eines ursprünglichen Facettenauges der Mandibulata. Zool Beitr NF 32:437–478Google Scholar
  34. Pollock JA, Benzer S (1988) Transcript localization of four opsin genes in the three visual organs of Drosophila melanogaster, RH2 is ocellus specific. Nature 333:779–782Google Scholar
  35. Poulson DF (1950) Histogenesis, organogenesis, and differentiation in the embryo of Drosophila melanogaster (Meigen). In: Demerec M (ed) Biology of Drosophila. Wiley, New York, pp 168–274Google Scholar
  36. Ready DF, Hanson TE, Benzer S (1976) Development of the Drosophila retina, a neurocrystalline lattice. Dev Biol 53:217–240Google Scholar
  37. Ruohola H, Bremer KA, Beker D, Swedlow JR, Jan LY, Jan YN (1991) Role of neurogenic genes in establishment of follicle cell fate and oocyte polarity during oogenesis in Drosophila. Cell 66:433–439Google Scholar
  38. Shellenbarger DL, Mohler JD (1975) Temperature sensitive mutations of the Notch locus in Drosophila melanogaster. Genetics 81:143–162Google Scholar
  39. Steller H, Fischbach KF, Rubin G (1987) Disconnected: a locus required for neuronal pathway formation. Cell 50:1139–1153Google Scholar
  40. Tepass U, Theres C, Knust E (1990) crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell 61:787–799Google Scholar
  41. Tix S, Minden J, Technau GM (1987) Pre-existing neuronal pathways in the developing optic lobes of Drosophila. Development 105:739–746Google Scholar
  42. Turner FR, Mahowald AP (1979) Scanning electron microscopy of Drosophila embryogenesis. III. Formation of the head and caudal segments. Dev Biol 68:96–109Google Scholar
  43. Wharton KA, Johansen KM, Xu T, Artavanis-Tsakonas S (1985) Nucleotide sequence from the neurogenic locus Notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43:567–581Google Scholar
  44. White K, Kankel DR (1978) Patterns of cell division and cell movement in the formation of the imaginal nervous system in Drosophila melanogaster. Dev Biol 65:296–321Google Scholar
  45. Zipursky SI, Venkatesh TR, Teplow DB, Benzer S (1984) Neuronal development in the Drosophila retina: monoclonal antibodies as molecular probes. Cell 36:15–26Google Scholar

Copyright information

© Srpinger-Verlag 1993

Authors and Affiliations

  • Patricia Green
    • 1
  • Amelia Y. Hartenstein
    • 1
  • Volker Hartenstein
    • 1
  1. 1.Department of BiologyUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations