Advertisement

Molecular and General Genetics MGG

, Volume 117, Issue 4, pp 349–366 | Cite as

Control regions within the argECBH gene cluster of Escherichia coli K12

  • D. Elseviers
  • R. Cunin
  • N. Glansdorff
  • S. Baumberg
  • E. Ashcroft
Article
  • 40 Downloads

Summary

In Escherichia coli K12, four of the nine structural genes involved in the biosynthesis of arginine (argE, C, B and H) form a tight cluster within which a clockwise-polarized unit of expression (argCBH) had previously been identified. From a mutant carrying an argCB deletion that greatly lowers the rate of expression of argE but falls short of known argE markers, we have isolated several derivatives in which the expression of argE is partly restored. In about a third of these strains repression of both E and H enzymes by arginine is almost abolished. The mutations responsible appear to be cis-dominant and to map to the right of argE, probably between argE and C. One mutant in which control of argE alone is affected has also been found; it is shown to carry a duplication of argE in addition to the argCB deletion of the parental strain. We discuss the hypothesis that argE and argCBH form two operons transcribed in opposite directions from an internal promoter-operator complex.

It is also suggested that a secondary promoter exists at or near the argB-H boundary.

Keywords

Enzyme Escherichia Coli Arginine Opposite Direction Gene Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, F. B.: Orientation and order of loci of the met-arg region in the Salmonella typhimurium linkage map. Genetics 56, 463–466 (1967).PubMedPubMedCentralGoogle Scholar
  2. Atkins, F. F., Loper, J. C.: Transcription initiation in the histidine operon of Salmonella typhimurium. Proc. nat. Acad. Sci. (Wash.) 65, 925–932 (1970).CrossRefGoogle Scholar
  3. Bauerle, R. H., Margolin, P.: Evidence for two sites for initiation of gene expression in the tryptophan operon of Salmonella typhimurium. J. molec. Biol. 26, 423–436 (1967).CrossRefGoogle Scholar
  4. Baumberg, S.: Acetylhistidine as substrate for acetylornithinase: a new system for the selection of arginine regulation mutants in Escherichia coli. Molec. gen. Genet. 106, 162–173 (1970).CrossRefGoogle Scholar
  5. Baumberg, S., Ashcroft, E.: Absence of polar effect of frameshift mutations in the E gene of the Escherichia coli argECBH cluster. J. gen. Microbiol. 69, 365–373 (1971).CrossRefGoogle Scholar
  6. Baumberg, S., Bacon, D. F., Vogel, H. J.: Individually repressible enzymes specified by clustered genes of arginine synthesis. Proc. nat. Acad. Sci. (Wash.) 53, 1029–1032 (1965).CrossRefGoogle Scholar
  7. Berberich, M. A., Kovach, J. S., Goldberger, R. F.: Chain initiation in a polycistronic message: sequential versus simultaneous derepression of the enzymes for histidine biosynthesis in Salmonella typhimurium. Proc. nat. Acad. Sci. (Wash.) 75, 1857–1864 (1967).CrossRefGoogle Scholar
  8. Clark, A. J., Margulies, A. D.: Isolation and characterization of recombination-deficient mutants of Escherichia coli K12. Proc. nat. Acad. Sci. (Wash.) 53, 451–459 (1965).CrossRefGoogle Scholar
  9. Cunin, R., Elseviers, D., Glansdorff, N.: De novo gene duplication versus reactivation of cryptic genes in Escherichia coli K-12. Molec. gen. Genet. 108, 154–157 (1970).CrossRefGoogle Scholar
  10. Cunin, R., Elseviers, D., Sand, G., Freundlich, G., Glansdorff, N.: On the functional organization of the argECBH cluster of genes in Escherichia coli K-12. Molec. gen. Genet. 106, 32–47 (1969).CrossRefGoogle Scholar
  11. Cunin, R., Glansdorff, N.: Messenger RNA from arginine and phosphoenolpyruvate carboxylase genes in argR + and argR - strains of E. coli K12. FEBS Letters 18, 135–137 (1971a).CrossRefGoogle Scholar
  12. Cunin, R., Glansdorff, N.: Transcriptional control of arginine genes in Escherichia coli K12. Arch. Int. Physiol. Biochim. 79, 1014–1015 (1971b).Google Scholar
  13. Demerec, M., Adelberg, E. A., Clark, A. J., Hartman, P. E.: A proposal for a uniform nomenclature in bacterial genetics. Genetics 54, 61–76 (1966).PubMedPubMedCentralGoogle Scholar
  14. Echols, H., Green, L.: Establishment and maintenance of repression by bacteriophage lambda: the role of the cI, cII and cIII proteins. Proc. nat. Acad. Sci. (Wash.) 68, 2190–2194 (1971).CrossRefGoogle Scholar
  15. Eisen, H., Pereira da Silva, L., Jacob, F.: The regulation and mechanism of DNA synthesis in bacteriophage. Cold Spr. Harb. Symp. quant. Biol. 33, 755–764 (1968).CrossRefGoogle Scholar
  16. Elseviers, D., Cunin, R., Glansdorff, N.: Reactivation of arginine genes under the influence of polar mutations. FEBS Letters 3, 18–20 (1969).CrossRefGoogle Scholar
  17. Eron, L., Block, R.: Mechanism of initiation and repression of in vitro transcription of the lac operon of Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 68, 1828–1832 (1971).CrossRefGoogle Scholar
  18. Fan, D. P.: Deletion in limited homology recombination in Escherichia coli. Genetics 61, 351–361 (1969).PubMedPubMedCentralGoogle Scholar
  19. Glansdorff, N.: Topography of cotransducible arginine mutations in Escherichia coli K-12. Genetics 51, 167–179 (1965).PubMedPubMedCentralGoogle Scholar
  20. Glansdorff, N.: Pseudoinversions in the chromosome of Escherichia coli K-12. Genetics 55, 49–61 (1967).PubMedPubMedCentralGoogle Scholar
  21. Glansdorff, N., Sand, G.: Coordination of enzyme synthesis in the arginine pathway of Escherichia coli K-12. Biochim. biophys. Acta (Amst.) 108, 308–311 (1965).CrossRefGoogle Scholar
  22. Glansdorff, N., Sand, G.: Duplication of a gene belonging to an arginine operon of Escherichia coli K-12. Genetics 60, 257–268 (1968).PubMedPubMedCentralGoogle Scholar
  23. Glansdorff, N., Sand, G., Verhoef, C.: The dual control of ornithine transcarbamylase synthesis in Escherichia coli K-12. Mutation Res. 4, 743–751 (1967).CrossRefGoogle Scholar
  24. Gorini, L., Gundersen, W., Burger, M.: Genetics of regulation of enzyme synthesis in the arginine biosynthetic pathway of Escherichia coli. Cold Spr. Harb. Symp. quant. Biol. 26, 173–182 (1961).CrossRefGoogle Scholar
  25. Guha, A., Saturen Y., Szybalski, W.: Divergent orientation of transcription from the biotin locus of Escherichia coli. J. molec. Biol. 56, 53–62 (1971).CrossRefGoogle Scholar
  26. Ippen, K., Miller, J. H., Scaife, J. G., Beckwith, J.: New controlling elements in the lac operon of Escherichia coli. Nature (Lond.) 217, 825–827 (1968).CrossRefGoogle Scholar
  27. Jacob, F., Wollman, E.: Sexuality and the genetics of bacteria. New York: Academic Press 1961.Google Scholar
  28. Jacoby, G. A.: Mapping the gene determining ornithine transcarbamylase and its operator in Escherichia coli. B. J. Bact. 108, 645–651 (1971).PubMedGoogle Scholar
  29. Jacoby, G. A.: Control of the argECBH cluster in Escherichia coli. Molec. gen. Genet. 117, 337–348 (1972).PubMedGoogle Scholar
  30. Jacoby, G. A., Gorini, L.: A unitary account of the repression mechanism of arginine biosynthesis in Escherichia coli. I. The genetic evidence. J. molec. Biol. 39, 73–87 (1969).CrossRefGoogle Scholar
  31. Lavallé, R.: Regulation at the level of translation in the arginine pathway of Escherichia coli K-12. J. molec. Biol. 51, 449–451 (1970).CrossRefGoogle Scholar
  32. Legrain, C., Halleux, P., Stalon, V., Glansdorff, N.: The dual genetic control of arginine carbamoyltransferase in Escherichia coli, a case of bacterial hybrid enzyme. Europ. J. Biochem., in press (1972).Google Scholar
  33. Lindahl, C.: Bacteriophage P2: replication of the chromosome requires a protein which acts only on the genome that coded for it. Virology 42, 522–533 (1970).CrossRefGoogle Scholar
  34. Low, B.: Formation of merodiploids in matings with a class of rec - recipient strains of Escherichia coli K-12. Proc. nat. Acad. Sci. (Wash.) 60, 160–167 (1968).CrossRefGoogle Scholar
  35. Maas, K. W.: Studies on repression of arginine biosynthesis in Escherichia coli. Cold. Spr. Harb. Symp. quant. Biol. 26, 183–191 (1961).CrossRefGoogle Scholar
  36. Maas, W. K., Clark, A. J.: Studies on the mechanism of repression of arginine biosynthesis in Escherichia coli. II. Dominance of repressibility in diploids. J. molec. Biol. 8, 365–370 (1964).CrossRefGoogle Scholar
  37. Maas, W. K., Maas, R., Wiame, J. M., Glansdorff, N.: Studies on the mechanism of repression of arginine biosynthesis in Escherichia coli. I. Dominance of repressibility in zygotes. J. molec. Biol. 8, 359–364 (1964).CrossRefGoogle Scholar
  38. McFall, E., Bloom, F. R.: Catabolite repression in the D-Serine-deaminase system of Escherichia coli K-12. J. Bact. 105, 241–248 (1971).PubMedGoogle Scholar
  39. McLellan, W. L., Vogel, H. J.: Translational repression in the arginine system of Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 67, 1703–1719 (1970).CrossRefGoogle Scholar
  40. Pittard, J., Loutit, J. S., Adelberg, E. A.: Gene transfer by F′ strains of Escherichia coli K-12. J. Bact. 85, 1394–1401 (1963).PubMedGoogle Scholar
  41. Prozesky, O. W.: Transductional analysis of arginineless mutants in Proteus mirabilis. J. gen. Microbiol. 54, 127–143 (1968).CrossRefGoogle Scholar
  42. Reichardt, L., Kaiser, A. D.: Control of λ repressor synthesis. Proc. nat. Acad. Sci. (Wash.) 68, 2185–2189 (1971).CrossRefGoogle Scholar
  43. Reznikoff, W. S., Miller, J. H., Scaife, J. G., Beckwith, J. R.: A mechanism for repressor action. J. molec. Biol. 43, 201–213 (1969).CrossRefGoogle Scholar
  44. Rogers, P., Krzyzek, R., Kaden, T.M., Arfman, E.: Effect of arginine and canavanine on arginine messenger RNA synthesis. Biochem. biophys. Res. Commun. 44, 1220–1226 (1971).CrossRefGoogle Scholar
  45. Sadler, J. R., Smith, T. F.: Mapping of the lactose operator. J. molec. Biol. 62, 139–169 (1971).CrossRefGoogle Scholar
  46. Scaife, J., Beckwith, J. R.: Mutational alteration of the maximal level of lac operon expression. Cold Spr. Harb. Symp. quant. Biol. 31, 403–408 (1966).CrossRefGoogle Scholar
  47. Stacey, K. A., Simson, E.: Improved method for the isolation of thymine requiring mutants of Escherichia coli. J. Bact. 90, 554–555 (1965).PubMedGoogle Scholar
  48. Udaka, S.: Isolation of the arginine repressor in Escherichia coli. Nature (Lond.) 228, 336–338 (1970).CrossRefGoogle Scholar
  49. Vogel, H. J.: Aspects of repression in the regulation of enzyme synthesis: pathway-wide control and enzyme-specific response. Cold Spr. Harb. Symp. quant. Biol. 26, 163–172 (1961).CrossRefGoogle Scholar
  50. Vogel, H. J., Bonner, D. M.: Acetylornithinase of Escherichia coli: partial purification and some properties. J. biol. Chem. 218, 97–106 (1956).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • D. Elseviers
    • 1
    • 2
  • R. Cunin
    • 1
    • 2
  • N. Glansdorff
    • 1
    • 2
  • S. Baumberg
    • 3
  • E. Ashcroft
    • 3
  1. 1.Laboratorium voor Erfelijkheidsleer en MicrobiologieVrije Universiteit BrusselBrusselsBelgium
  2. 2.Opzoekingsinstituut van het COOVIBrusselsBelgium
  3. 3.Department of GeneticsUniversity of LeedsLeedsEngland

Personalised recommendations