Advertisement

Molecular and General Genetics MGG

, Volume 117, Issue 4, pp 337–348 | Cite as

Control of the argECBH cluster in Escherichia coli

  • George A. Jacoby
Article

Summary

The argECBH genes in Escherichia coli are tightly clustered, but argE is not controlled coordinately with argCBH. Furthermore, while nonsense mutations have been isolated in argC and argB which are polar for argH, nonsense and frameshift mutations in argE are found nonpolar for the remaining genes in the cluster. Conditions have been realized for selecting mutations which relieve repression of argC without affecting control of arg genes outside the cluster. These mutations map between argE and argC, are cis-dominant, and cause partial constitutivity for argE as well as for argCBH. These results suggest that the argECBH cluster comprises two operons transcribed divergently from an internal operator-promoter complex.

Keywords

Escherichia Coli Nonsense Mutation Frameshift Mutation Select Mutation Partial Constitutivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht, A. M., Vogel, H. J.: Acetylornithine δ-transaminase. Partial purification and repression behavior. J. biol. Chem. 239, 1872–1876 (1964).PubMedGoogle Scholar
  2. Baich, A., Vogel, H. J.: N-acetyl-γ-glutamokinase and N-acetylglutamic γ-semialdehyde dehydrogenase: repressible enzymes of arginine synthesis in Escherichia coli. Biochem. biophys. Res. Commun. 7, 491–496 (1962).CrossRefGoogle Scholar
  3. Baumberg, S., Ashcroft, E.: Absence of polar effect of frameshift mutations in the E gene of the Escherichia coli argECBH cluster. J. gen. Microbiol. 69, 365–373 (1971).CrossRefGoogle Scholar
  4. Baumberg, S., Bacon, D. F., Vogel, H. J.: Individually repressible enzymes specified by clustered genes of arginine synthesis. Proc. nat. Acad. Sci. (Wash.) 53, 1029–1032 (1965).CrossRefGoogle Scholar
  5. Breckenridge, L., Gorini, L.: Genetic analysis of streptomycin resistance in Escherichia coli. Genetics 65, 9–25 (1970).PubMedPubMedCentralGoogle Scholar
  6. Clark, A. J.: Genetic analysis of a “double male” strain of Escherichia coli K-12. Genetics 48, 105–120 (1963).PubMedPubMedCentralGoogle Scholar
  7. Clark, A. J., Margulies, A. D.: Isolation and characterization of recombination-deficient mutants of Escherichia coli K12. Proc. nat. Acad. Sci. (Wash.) 53, 451–459 (1965).CrossRefGoogle Scholar
  8. Cunin, R., Elseviers, D., Sand, G., Freundlich, G., Glansdorff, N.: On the functional organization of the argECBH cluster of genes in Escherichia coli K-12. Molec. gen. Genet. 106, 32–47 (1969).CrossRefGoogle Scholar
  9. Cunin, R., Glansdorff, N.: Messenger RNA from arginine and phosphoenolpyruvate carboxylase genes in argR + and argR - strains of E. coli K-12. FEBS Letters 18, 135–137 (1971).CrossRefGoogle Scholar
  10. Davis, B. D., Mingioli, E. S.: Mutants of Escherichia coli requiring methionine or vitamin B12. J. Bact. 60, 17–28 (1950).PubMedGoogle Scholar
  11. Elseviers, D., Cunin, R., Glansdorff, N., Baumberg, S., Ashcroft, E.: Organization of the argECBH cluster of genes in Escherichia coli K-12. Molec. gen. Genet., 117, 349–366 (1972).PubMedGoogle Scholar
  12. Epstein, W., Davies, M.: Potassium-dependent mutants of Escherichia coli K-12. J. Bact. 101, 836–843 (1970).PubMedGoogle Scholar
  13. Garrick-Silversmith, L., Hartman, P. E.: Histidine-requiring mutants of Escherichia coli K12, Genetic 66, 231–244 (1970).Google Scholar
  14. Glansdorff, N.: Topography of cotransducible arginine mutations in Escherichia coli K-12. Genetics 51, 167–179 (1965).PubMedPubMedCentralGoogle Scholar
  15. Glansdorff, N., Sand, G.: Coordination of enzyme synthesis in the arginine pathway of Escherichia coli K-12. Biochem. biophys. Acta (Amst.) 108, 308–311 (1965).CrossRefGoogle Scholar
  16. Gorini, L.: Regulation en retour (feedback control) de la synthèse de l'arginine chez Escherichia coli. Bull. Soc. Chim. biol. (Paris) 40, 1939–1952 (1958).Google Scholar
  17. Gorini, L., Gundersen, W., Burger, M.: Genetics of regulation of enzyme synthesis in the arginine biosynthetic pathway of Escherichia coli. Cold Spr. Harb. Symp. quant. Biol. 26, 173–182 (1961).CrossRefGoogle Scholar
  18. Gorini, L., Kataja, E.: Phenotypic repair by streptomycin of defective genotypes in E. coli. Proc. nat. Acad. Sci. (Wash.) 51, 487–493 (1964).CrossRefGoogle Scholar
  19. Gorini, L., Kaufman, H.: Selecting bacterial mutants by the penicillin method. Science 131, 604–605 (1960).CrossRefGoogle Scholar
  20. Guha, A., Saturen, Y., Szybalski, W.: Divergent orientation of transcription from the biotin locus of Escherichia coli. J. molec. Biol. 56, 53–62 (1971).CrossRefGoogle Scholar
  21. Henning, U., Herz, C.: Ein Strukturgen-Komplex für den Pyruvat-dehydrogenase-Komplex von Escherichia coli K 12. Z. Vererbgsl. 95, 260–275 (1964).Google Scholar
  22. Herbert, A. A., Guest, J. R.: Studies with α-ketoglutarate dehydrogenase mutants of Escherichia coli. Molec. gen. Genet. 105, 182–190 (1969).CrossRefGoogle Scholar
  23. Hirota, Y.: The effect of acridine dyes on mating type factors in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 46, 57–64 (1960).CrossRefGoogle Scholar
  24. Jacoby, G. A.: Mapping the gene determining ornithine transcarbamylase and its operator in Escherichia coli B. J. Bact. 108, 645–651 (1971).PubMedGoogle Scholar
  25. Jacoby, G. A., Gorini, L.: Genetics of control of the arginine pathway in Escherichia coli B and K. J. molec. Biol. 24, 41–50 (1967).CrossRefGoogle Scholar
  26. Jacoby, G. A., Gorini, L.: A unitary account of the repression mechanism of arginine biosynthesis in Escherichia coli. I. The genetic evidence. J. molec. Biol. 39, 73–87 (1969).CrossRefGoogle Scholar
  27. Karlström, O., Gorini, L.: A unitary account of the repression mechanism of arginine biosynthesis in Escherichia coli. II. Application to the physiological evidence. J. molec. Biol. 39, 89–94 (1969).CrossRefGoogle Scholar
  28. Krzyzek, R., Rogers, P.: Arginine control of transcription of argECBH messenger ribonucleic acid in Escherichia coli. J. Bact. 110, 945–954 (1972).PubMedGoogle Scholar
  29. Lavallé, R.: Regulation at the level of translation in the arginine pathway of Escherichia coli K12. J. molec. Biol. 51, 449–451 (1970).CrossRefGoogle Scholar
  30. Lennox, E. S.: Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1, 190–206 (1955).CrossRefGoogle Scholar
  31. Levinthal, M., Nikaido, H.: Consequences of deletion mutations joining two operons of opposite polarity. J. molec. Biol. 42, 511–520 (1969).CrossRefGoogle Scholar
  32. Low, B.: Formation of merodiploids in matings with a class of rec- recipient strains of Escherichia coli K12. Proc. nat. Acad. Sci. (Wash.) 60, 160–167 (1968).CrossRefGoogle Scholar
  33. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the folin phenol reagent. J. biol. Chem. 193, 265–275 (1951).PubMedGoogle Scholar
  34. Maas, W.: Studies on repression of arginine biosynthesis in Escherichia coli. Cold. Spr. Harb. Symp. quant. Biol. 26, 183–191 (1961).CrossRefGoogle Scholar
  35. McLellan, W. L., Vogel, H. J.: Translational repression in the arginine system of Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 67, 1703–1709 (1970).CrossRefGoogle Scholar
  36. Newton, W. A., Beckwith, J. R., Zipser, D., Brenner, S.: Nonsense mutants and polarity in the lac operon of Escherichia coli. J. molec. Biol. 14, 290–296 (1965).CrossRefGoogle Scholar
  37. Pittard, J., Loutit, J. S., Adleberg, E. A.: Gene transfer by F′ strains of Escherichia coli K-12. J. Bact. 85, 1394–1401 (1963).PubMedGoogle Scholar
  38. Ratner, S., Anslow, W. P., Jr., Petrack, B.: Biosynthesis of urea. VI. Enzymatic cleavage of argininosuccinic acid to arginine and fumaric acid. J. biol. Chem. 204, 115–125 (1953).PubMedGoogle Scholar
  39. Reznikoff, W. S., Miller, J. H., Scaife, J. G., Beckwith, J. R.: A mechanism for repressor action. J. molec. Biol. 43, 201–213 (1969).CrossRefGoogle Scholar
  40. Rogers, P., Krzyzek, R., Kaden, T. M., Arfman, E.: Effect of arginine and canavanine on arginine messenger RNA synthesis. Biochem. biophys. Res. Commun. 44, 1220–1226 (1971).CrossRefGoogle Scholar
  41. Sanderson, K. E.: Current linkage map of Salmonella typhimurium. Bact. Rev. 34, 176–193 (1970).PubMedGoogle Scholar
  42. Stacey, K. A., Simson, E.: Improved method for the isolation of thymine-requiring mutants of Escherichia coli. J. Bact. 90, 554–555 (1965).PubMedGoogle Scholar
  43. Steinberg, C. M., Edgar, R. S.: A critical test of a current theory of genetic recombination in bacteriophage. Genetics 47, 187–208 (1962).PubMedPubMedCentralGoogle Scholar
  44. Strigini, P., Gorini, L.: Ribosomal mutations affecting efficiency of amber suppression. J. molec. Biol. 47, 517–530 (1970).CrossRefGoogle Scholar
  45. Taylor, A. L.: Current linkage map of Escherichia coli. Bact. Rev. 34, 155–175 (1970).PubMedGoogle Scholar
  46. Vogel, H. J., Bonner, D. M.: Acetylornithinase of Escherichia coli: partial purification and some properties. J. biol. Chem. 218, 97–106 (1956).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • George A. Jacoby
    • 1
  1. 1.Massachusetts General HospitalBostonUSA

Personalised recommendations