Molecular and General Genetics MGG

, Volume 120, Issue 1, pp 17–25 | Cite as

The biogenesis of mitochondria 26

Mitochondrial recombination: the segregation of parental and recombinant mitochondrial genotypes during vegetative division of yeast
  • H. B. Lukins
  • Jillian R. Tate
  • G. W. Saunders
  • Anthony W. Linnane
Article

Summary

The vegetative segregation of parental and recombinant mitochondrial (cytoplasmic) genomes of Saccharomyces cerevisiae were compared by experiments involving the micromanipulation of early zygotic buds. Recombinant mitochondrial genomes are formed rapidly upon zygote formation and initial zygote buds are frequently composed of varying proportions of recombinant and parental type gnomes, which then all segregate in a similar fashion. Evidence suggesting that some formation of recombinant genomes can continue in the early zygote progeny is presented, but the possibility that recombination is restricted to the zygote has not been excluded. Polarity phenomena appear to be determined by the mechanism of the mitochondrial recombination events rather than by the mechanism of distribution of recombinant genomes to zygote progeny.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bolotin, M., Coen, J., Deutsch, J., Dujon, B., Netter, P., Petrochilo, E., Slonimski, P. P.: La recombinaison des mitochondries chez Saccharomyces cerevisiae. Bull Instit. Pasteur 69, 215–239 (1971).Google Scholar
  2. Coen, D., Deutsch, J., Netter, P., Petrochilo, E., Slonimski, P. P.: In: Control of organelle development. Soc. Exp. Biol. Symposia No 24, 449–496 (1970).Google Scholar
  3. Ephrussi, B., Jakob, H., Grandchamp, S.: Etudes sur la suppressivité des mutants a deficience respiratoire de la levure. II. Etapes de la mutation grande en petite provoquee par le facteur suppressif. Genetics 54, 1–29 (1966).Google Scholar
  4. Gingold, E. B., Saunders, G. W., Lukins, H. B., Linnane, A. W.: Biogenesis of mitochondria. X. Reassortment of the cytoplasmic genetic determinations for respiratory competence and erythromycin resistance in Saccharomyces cerevisiae. Genetics 62, 735–744 (1969).Google Scholar
  5. Linnane, A. W., Saunders, G. W., Gingold, E. B., Lukins, H. B.: Biogenesis of mitochondria. V. Cytoplasmic inheritance of erythromycin resistance in Saccharomyces cerevisiae. Proc. nat. Acad. Sci. (Wash.) 59, 903–910 (1968).Google Scholar
  6. Mitchell, C., Bunn, C. L., Lukins, H. B., Linnane, A. W.: Biogenesis of mitochondria 23. The biochemical and genetic characteristics of two different oligomycin resistant mutants of Saccharomyces cerevisiae under the influence of cytoplasmic genetic modification. J. Bioenergetics 4, (1972) in press.Google Scholar
  7. Saunders, G. W., Gingold, E. B., Trembath, M. K., Lukins, H. B., Linnane, A. W.: Autonomy of chloroplasts and mitochondria (N. K. Boardman, A. W. Linnane and R. M. Smillie, eds.), p. 185–193. Amsterdam: North Holland Publ. 1970.Google Scholar
  8. Thomas, D. Y., Wilkie, D.: Inhibition of mitochondrial synthesis in yeast by erythromycin: cytoplasmic and nuclear factors controlling resistance. Genet. Res. 11, 33–41 (1968a).Google Scholar
  9. Thomas, D. Y., Wilkie, D. Recombination of mitochondrial drug-resistance factors in Saccharomyces cerevisiae. Biochem. biophys. Res. Commun. 30, 368–372 (1968b).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • H. B. Lukins
    • 1
  • Jillian R. Tate
    • 1
  • G. W. Saunders
    • 1
  • Anthony W. Linnane
    • 1
  1. 1.Department of BiochemistryMonash UniversityClayton

Personalised recommendations