Molecular and General Genetics MGG

, Volume 160, Issue 3, pp 325–330 | Cite as

Generalized recombination in tandem duplications of bacteriophage lambda

  • John B. Hays
  • Robert J. Zagursky
Article

Summary

Recombination between the tandem duplicated segments of λb221a106-15 yields unduplicated (“single-copy”) λb221 phage. The apparent frequency of intramolecular events among these recombinations was determined for both cellular (“Rec”) and bacteriophage (“Red”) generalized recombination systems. The progeny from single-cycle growth experiments with genetically marked duplication phages were treated with EDTA to inactivate all but the singlecopy phages produced by recombination. Analysis of the genotypes of the EDTA-resistant phages suggested that intramolecular events were about 1 to 5 times as frequent as intermolecular ones. While the results suggest that intramolecular events are not intrinsically forbidden, the quantitative values for the ratio depend on the assumption that intracellular phage chromosomes are completely mixed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amati, P., Meselson, M.: Localized negative interference in bacteriophage λ. Genetics 51, 369–379 (1964)Google Scholar
  2. Bellett, A.J.D., Busse, H.G., Baldwin, R.L.: Tandem genetic duplications in a derivative of phage lamda. In: The bacteriophage lambda (A.D. Hershey, ed.), pp. 501–513. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory 1971Google Scholar
  3. Berg, D.E.: Regulation in phage with duplications of the immunity region. In: The bacteriophage lambda (A.D. Hershey, ed.), pp. 667–678. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory 1971Google Scholar
  4. Bertani, G., Bertani, L.E.: Constitutive expression of bacteriophage P2 early genes resulting from a tandem duplication. Proc. nat. Acad. Sci. (Wash.) 71, 315–319 (1974)Google Scholar
  5. Chattoraj, D.K., Inman, R.B.: Tandem duplication in bacteriophage P2: Electron microscopic mapping. Proc. nat. Acad. Sci. (Wash.) 71, 311–314 (1974)Google Scholar
  6. Emmons, S.W., Thomas, J.O.: Tandem genetic duplications in phage lambda. IV. The locations of spontaneously arising tandem duplications. J. molec. Biol. 91, 147–152 (1975)Google Scholar
  7. Freedman, R., Brenner, D.: Hybrid T4rII cistrons created by genetic duplications. J. molec. Biol. 68, 409–419 (1972)Google Scholar
  8. Gottesman, S., Gottesman, M.: Excision of prophage λ in a cell-free system. Proc. nat. Acad. Sci. (Wash.). 72, 2188–2192 (1971)Google Scholar
  9. Jacob, F., Wollman, E.: Étude génétique d'un bacteriophage teméré d' Escherichia coli II. Mécanisme de la recombinaison génétique. Ann. Inst. Pasteur 87, 1–17 (1954)Google Scholar
  10. Kaiser, A.D.: A genetic study of the temperate coliphage lambda. Virology 1, 424–443 (1955)Google Scholar
  11. Mizuuchi, K., Nash, H.: Restriction assay for integrative recombination of bacteriophage λ DNA in vitro: requirement for closed circular DNA substrate. Proc. nat. Acad. Sci. (Wash.) 73, 3524–3528 (1976)Google Scholar
  12. Murialdo, H.: Restriction in the number of infecting lambda phage genomes that can participate in intracellular growth. Virology 60, 128–138 (1974)Google Scholar
  13. Nash, H.: zatt B-att P, a λ derivative containing both sites involved in integrative recombination. Virology 57, 207–216 (1974)Google Scholar
  14. Nash, H.: Integrative recombination of bacteriophage lambda DNA in vitro. Proc. nat. Acad. Sci. (Wash.) 72, 1072–1076 (1975)Google Scholar
  15. Parma, D.H., Ingraham, L.J., Snyder, M.: Tandem duplications of the rII region of bacteriophage T4D. Genetics 71, 319–335 (1972)Google Scholar
  16. Shulman, M., Gottesman, M.: Lambda att 2: a transducing phage capable of intramolecular int-xis promoted recombination. In: The bacteriophage lambda (A.D. Hershey ed.), pp. 477–488. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory 1971Google Scholar
  17. Signer, E., Weil, J.: (1968). As quoted in Signer, E.: General recombination. In: The bacteriophage lambda (A.D. Hershey, ed.), p. 140. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory 1971Google Scholar
  18. Symonds, N., van den Ende, P., Durston, A., White, P.: The structure of rII diploids of phage T4. Molec. gen. Genet. 116, 223–238 (1972)Google Scholar
  19. Visconti, N., Delbrück, M.: The mechanism of genetic recombination in phage. Genetics 38, 5–33 (1953)Google Scholar
  20. Yamagishi, H., Inokuchi, H., Ozeki, H.: Excision and duplication of Su 3+ transducing fragments carried by bacteriophage ϕ80. II. Red- or Rec-dependent excision and duplication. J. molec. Biol. 106, 133–150 (1976)Google Scholar
  21. Yamaguchi, F.: Genetic instability of the supressor activity of a transducing phage ϕ80pSu 3+ during vegetative growth: deletion and tandem duplication of the Su 3+ transducing fragment. Virology 72, 45–60 (1976)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • John B. Hays
    • 1
  • Robert J. Zagursky
    • 1
  1. 1.Department of ChemistryUniversity of Maryland, Baltimore CountyCatonsvilleUSA

Personalised recommendations