Biological Cybernetics

, Volume 59, Issue 4–5, pp 229–236

Factors governing the adaptation of cells in area-17 of the cat visual cortex

  • T. Maddess
  • M. E. McCourt
  • B. Blakeslee
  • R. B. Cunningham


Neurons in area 17 of the cat visual cortex adapt when stimulated by drifting patterns of optimal orientation, spatial frequency and temporal frequency (Ohzawa et al. 1982; Albrecht et al. 1984; Ohzawa et al. 1985). A component of this adaptation has been attributed to a contrast gain-control mechanism, rather than to neural fatigue, and results in enhanced differential sensitivity around the adapting contrast level (Ohzawa et al. 1982; Albrecht et al. 1984; Ohzawa et al. 1985). Experiments described here suggest that neural response rate, the directional selectivity of the cell, and the temporal frequency of the stimulus, are the principal determinants of adaptation, irrespective of other stimulus parameters such as contrast, velocity, or spatial frequency. The present results can nevertheless accommodate the results of previous studies of adaptation, and additionally provide scope for the resolution of apparent contradictions between results from psychophysical and neurophysiological studies of adaptation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht DG, Hamilton DB (1982) Striate cortex of monkey and cat: contrast response function. J Neurophysiol 48:217–237PubMedGoogle Scholar
  2. Albrecht DG, Farrer SB, Hamilton DB (1984) Spatial contrast adaptation characteristics of neurons recorded in the cat's visual cortex. J Physiol 347:713–739CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barlow HB, Brindley GS (1963) Inter-ocular transfer of movement after-effects during pressure blinding of the stimulated eye. Nature 200:1347CrossRefPubMedGoogle Scholar
  4. Barlow HB, Macleod DIA, van Meeteren A (1976) Adaptation to gratings: no compensatory advantages found. Vision Res 16:1043–1045CrossRefPubMedGoogle Scholar
  5. Blakemore C, Campbell FW (1969) On the existence in the human visual system of neurons selectively sensitive to the orientation and size of retinal images. J Physiol (London) 203:237–260CrossRefGoogle Scholar
  6. Borst A, Egelhaaf M (1987) Temporal modulation of luminance adapts time constant of fly movement detectors. Biol Cybern 56:209–215CrossRefGoogle Scholar
  7. Bullier J, Henry GH (1979) Laminar distribution of first-order neurons and afferent terminals in cat striate cortex. J Neurophysiol 42:1251–1263PubMedGoogle Scholar
  8. Cleland BG, Dubin MW, Levick WR (1971a) Sustained and transient neurone in the cat's retina and lateral geniculate nucleus. J Physiol (London) 217:473–497CrossRefGoogle Scholar
  9. Cleland BG, Dubin MW, Levick WR (1971b) Simultaneous recording of input and output of lateral geniculate neurone. Nat New Biol 231:191–192CrossRefPubMedGoogle Scholar
  10. Dobson AJ (1983) An introduction to statistical modelling. Chapman & Hall, LondonCrossRefGoogle Scholar
  11. Gilinsky AS (1968) Orientation-specific effects of adapting light on visual acuity. J Opt Soc Am 58:13–18CrossRefPubMedGoogle Scholar
  12. Hammond P (1978) Inadequacy of nitrous oxide/oxygen mixtures for maintaining anaesthesia in cats: satisfactory alternatives. Pain 5:142–151CrossRefGoogle Scholar
  13. Henry GH (1977) Receptive field classes of cells in the striate cortex of the cat. Brain Res 133:1–28CrossRefPubMedGoogle Scholar
  14. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol (London) 160:106–154CrossRefGoogle Scholar
  15. Johnston A, Wright MJ (1983) Visual motion and cortical velocity. Nature 304:436–438CrossRefPubMedGoogle Scholar
  16. Kaplan E, Shapley RM (1984) The origin of theS(slow) potential in the mammalian lateral geniculate nucleus. Exp Brain Res 55:111–116CrossRefPubMedGoogle Scholar
  17. Lorenceau J (1987) Recovery from contrast adaptation: effects of spatial and temporal frequency. Vision Res 27:2185–2191CrossRefPubMedGoogle Scholar
  18. McCullagh P, Nelder JA (1983) Generalized linear models. Chapman & Hall, LondonCrossRefGoogle Scholar
  19. McKee SP (1981) A local mechanism for differential velocity detection. Vision Res 21:491–500CrossRefPubMedGoogle Scholar
  20. MacKerras P, Bossomaier T, Maddess T, Laughlin S (1988) Information gains from contrast adaptation (in preparation)Google Scholar
  21. Maddess T (1986) Afterimage-like effects in the motion-sensitive neuronH1. Proc R Soc London B 228:433–459CrossRefGoogle Scholar
  22. Maddess T, Laughlin SB (1985) Adaptation of the motionsensitive neuronH1 is generated locally and governed by contrast frequency. Proc R Soc London B 225:251–275CrossRefGoogle Scholar
  23. Movshon JA, Lennie P (1979) Pattern-selective adaptation in visual cortical neurons. Nature 278:850–852CrossRefPubMedGoogle Scholar
  24. Nakayama K (1981) Differential motion hyperacuity under conditions of common image motion. Vision Res 21:1475–1482CrossRefPubMedGoogle Scholar
  25. Ohzawa I, Sclar G, Freeman RD (1982) Contrast gain control in the cat visual cortex. Nature 298:266–268CrossRefPubMedGoogle Scholar
  26. Ohzawa I, Sclar G, Freeman RD (1985) Contrast gain control in the cat visual system. J Neurophysiol 54:651–667PubMedGoogle Scholar
  27. Pantle A (1974) Motion aftereffect magnitude as a measure of the spatio-temporal response properties of direction-sensitive analyzers. Vision Res 14:1229–1236CrossRefPubMedGoogle Scholar
  28. Pantle A, Sekuler RW (1968) Size-detecting mechanisms in human vision. Science 162:1146–1148CrossRefPubMedGoogle Scholar
  29. Rodieck RW, Pettigrew JD, Bishop PO, Nikara T (1967) Residual eye movements in receptive field studies of paralyzed cats. Vision Res 7:107–110CrossRefPubMedGoogle Scholar
  30. Santen JPH van, Sperling G (1985) Elaborated Reichardt detectors. J Opt Soc Am A 2:300–321CrossRefPubMedGoogle Scholar
  31. Sclar G (1987) Expression of “retinal” contrast gain control by neurons of the cat's lateral geniculate nucleus. Exp Brain Res 66:589–596CrossRefPubMedGoogle Scholar
  32. Sekuler R (1975) Visual motion perception. In: Carterette EC, Freeman MP (eds) Seeing. Handbook of perception, vol V. Academic Press, New York, pp 387–430Google Scholar
  33. Sekuler R, Pantle A, Levinson E (1978) Physiological basis of motion perception. In: Held R, Leibowitz HW, Teuber H (eds) Perception. Handbook of sensory physiology, vol VIII Springer, Berlin Heidelberg New York, pp 67–98CrossRefGoogle Scholar
  34. Shapley RM, Victor JD (1978) The effect of contrast on the transfer properties of cat retinal ganglion cells. J Physiol London 285:275–298CrossRefPubMedPubMedCentralGoogle Scholar
  35. Tohlhurst DJ, Movshon JA (1975) Spatial and temporal contrast sensitivity of striate cortical neurons. Nature 257:674–675CrossRefGoogle Scholar
  36. Van Doorn AJ, Koenderink JJ (1983) Detectability of velocity gradients in moving random dot patters. Vision Res 23:799–804CrossRefPubMedGoogle Scholar
  37. Weisberg S (1980) Applied linear regression. Wiley, New YorkGoogle Scholar
  38. Wright MJ, Johnston A (1985) Invariant tuning of motion aftereffect. Vision Res 25:1947–1955CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • T. Maddess
    • 1
    • 2
  • M. E. McCourt
    • 2
    • 3
    • 4
  • B. Blakeslee
    • 1
    • 3
    • 4
  • R. B. Cunningham
    • 5
  1. 1.Department of Neurobiology, Research School of Biological SciencesThe Australian National UniversityCanberraAustralia
  2. 2.Visual Neurosciences UnitJohn Curtin School of Medical ResearchCanberraAustralia
  3. 3.Department of PsychologyUniversity of TexasAustinUSA
  4. 4.Institute for Neurological Sciences ResearchUniversity of TexasAustinUSA
  5. 5.Department of Statistics, The FacultiesAustralian National UniversityCanberraAustralia

Personalised recommendations