Molecular and General Genetics MGG

, Volume 106, Issue 1, pp 32–47 | Cite as

On the functional organization of the arg ECBH cluster of genes in Escherichia coli K-12

  • R. Cunin
  • D. Elseviers
  • G. Sand
  • G. Freundlich
  • G. Glansdorff


Among the four seemingly adjacent loci of the argECBH cluster of E. coli K-12, the last three are shown to belong to the same unit of coordinated expression; the latter exhibits a clockwise polarity in contrast to all other known E. coli operons, except the cluster governing the synthesis of the pyruvate dehydrogenase complex.

The analysis of several deletion and nonsense mutants suggests that argE (the expression of which is not strictly correlated with the functioning of the argCBH group) has the same polarity but is not integrated with the three other genes into one operon.

Between polar argC B and B mutants the coefficient of repressibility of enzyme H synthesis varies widely. This feature resembles the reduced repressibility of distal gene activity found in polar mutants in the tryptophan operons of E. coli and S. typhimurium but not in the lac, gal (E. coli) and his (S. typhimurium) operons.

Possible implications of the present results and some relevant data that have appeared in the recent literature are discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Archibald, R. M.: Colorimetric determination of urea. J. biol. Chem. 157, 507–518 (1945).Google Scholar
  2. Armstrong, F. B.: Orientation and order of the met-arg region in the Salmonella typhimurium linkage map. Genetics 56, 463–466 (1967).Google Scholar
  3. Bauerle, R. H., Margolin, P.: The functional organization of the tryptophan gene cluster in Salmonella typhimurium. Proc. nat. Acad. Sci. (Wash.) 56, 111–118 (1966).Google Scholar
  4. —: Evidence for two sites for initiation of gene expression in the tryptophan operon of Salmonella typhimurium. J. molec. Biol. 26, 423–436 (1967).Google Scholar
  5. Baumberg, S., Bacon, D. F., Vogel, H. J.: Individually repressible enzymes specified by clustered genes of arginine biosynthesis. Proc. nat. Acad. Sci. (Wash.) 53, 1029–1032 (1965).Google Scholar
  6. Boman, H. G., Boman, I. A., Maas, W. K.: Studies on the incorporation of arginine into acceptor RNA of Escherichia coli. In: Biological structure and function (Goodwin and Lindberg, eds.), p. 297–308. New York: Acad. Press 1961.Google Scholar
  7. Crockaert, R., Schram, E.: Dosage des N-carbamoyldérivés d'acides aminés par la diacétylmonoxime. Bull. Soc. Chim. biol. (Paris) 45, 1093–1106 (1958).Google Scholar
  8. Cunin, R., Elseviers, D., Sand, G., Freundlich, H., Glansdorff, N.: Organisation fonctionelle d'un groupe de loci arginine contigus chez Escherichia coli. Arch. int. Phys. Biochem. 76, 927–928 (1968).Google Scholar
  9. Demerec, M.: Selfers attributed to unequal crossovers in Salmonella. Proc. nat. Acad. Sci. (Wash.) 48, 1696–1704 (1962).Google Scholar
  10. —, Adelberg, E. A., Clark, A. J., Hartman, P. E.: A proposal for a uniform nomenclature in bacterial genetics. Genetics 54, 61–76 (1966).Google Scholar
  11. Elseviers, D., Cunin, R., Glansdorff, N.: Reactivation of arginine genes under the influence of polar mutations. FEBS Letters 3, 18–20 (1969).Google Scholar
  12. —, Sand, G., Glansdorff, N.: Reactivation of genes under influence of polar mutations. Arch. int. Phys. Biochem. 76, 929–930 (1968).Google Scholar
  13. Fink, G. R., Martin, R. G.: Translation and polarity in the histidine operon. II Polarity in the histidine operon. J. molec. Biol. 97–107 (1967).Google Scholar
  14. Gillespie, D., Demerec, M., Itikawa, H.: Appearance of double mutants in aged cultures of Salmonella typhimurium cysteine-requiring strains. Genetics 59, 433–442 (1968).Google Scholar
  15. Glansdorff, N.: Topography of cotransducible arginine mutations in Escherichia coli K-12. Genetics 51, 167–179 (1965).Google Scholar
  16. Glansdorff, N.: Le contrôle génétique des biosynthèses de l'arginine et du carbamoylphosphate chez Escherichia coli. Thesis, University of Brussels (1966).Google Scholar
  17. —: Pseudoinversions in the chromosome of Escherichia coli K-12. Genetics 55, 49–61 (1967).Google Scholar
  18. —, Sand, G.: Coordination of enzyne synthesis in the arginine pathway of Escherichia coli K-12. Biochim. biophys. Acta (Amst.) 108, 308–311 (1965).Google Scholar
  19. —: Duplication of a gene belonging to an arginine operon of Escherichia coli K-12. Genetics 60, 257–268 (1968).Google Scholar
  20. —, Verhoef, C.: The dual genetic control of ornithine transcarbamylase synthesis in Escherichia coli K-12. Mutation. Res. 4, 743–751 (1967).Google Scholar
  21. Havir, E. A., Tamir, H., Ratner, S., Warner, R. C.: Biosynthesis of urea. XI. Preparation and properties of crystalline argininosuccinase. J. biol. Chem. 240, 3079–3088 (1965).Google Scholar
  22. Henning, U., Herz, C.: Ein Strukturgen-Komplex für den pyruvat-Dehydrogenase Komplex von Escherichia coli K-12. Z. Vererbungsl. 95, 260–275 (1964).Google Scholar
  23. Hirshfield, I. N., Deken, R. de, Horn, P. C., Hopwood, D. A., Maas, W. K.: Studies on the mechanism of repression of arginien biosynthesis in Escherichia coli. III. Repression of enzymes of arginine biosynthesis in Arginyl-tRNA Synthetase mutants. J. molec. Biol. 35, 83–93 (1968).Google Scholar
  24. Immamoto, F., Ito, J., Yanofsky, Ch.: Polarity in the tryptophan operon of Escherichia coli. Cold Spr. Harb. Symp. quant. Biol. 31, 235–249 (1966).Google Scholar
  25. Jacob, F.: Transduction of lysogeny in Escherichia coli. Virology 1, 207–220 (1955).Google Scholar
  26. —, Perrin, D., Sanchez, C., Monod, J.: L'opéron, groupe de gènes à expression coordonnée par un opérateur. C.R. Acad. Sci. (Paris) 250, 1727–1729 (1960).Google Scholar
  27. Jacoby, G. A., Gorini, L.: A unitary account of the repression mechanism of arginine biosynthesis in Escherichia coli. J. molec. Biol. 39, 73–87 (1969).Google Scholar
  28. Maas, W. K.: Studies on repression of arginine biosynthesis in Escherichia coli. Cold Spr. Harb. Symp. quant. Biol. 26, 183–191 (1961).Google Scholar
  29. —, Clark, A. J.: Studies on the mechanism of repression of arginine biosynthesis in Escherichia coli. II. Dominance of repressibility in diploïds. J. molec. Biol. 8, 365–370 (1964).Google Scholar
  30. —, Maas, R., Wiame, J. -M., Glansdorff, N.: Studies on the mechanism of repression of arginine biosynthesis in Escherichia coli. I. Dominance of repressibility in zygotes. J. molec. Biol. 8, 359–364 (1964).Google Scholar
  31. Margolin, P.: Genetic fine structure of the leucine operon in Salmonella. Genetics 48, 441–457 (1963).Google Scholar
  32. —: Bipolarity information transfer from the Salmonella typhimurium chromosome. Science 147, 1456–1458 (1965).Google Scholar
  33. Martin, R. G., Silbert, D. F., Smith, D. W., Whitfield, H. J.: Polarity in the histidine operon. J. molec. Biol. 21, 357–369 (1966).Google Scholar
  34. Michaelis, G., Starlinger, P.: Sequential appearance of the galactose enzymes in Escherichia coli. Molec. Gen. Genetics 100, 210–215 (1967).Google Scholar
  35. Montagu, V. van, Leurs, C., Brachet, R., Thomas, R.: A set of amber mutants of bacteriophages λ and MS2 suitable for the identification of suppressors. Mutation. Res. 4, 698–700 (1967).Google Scholar
  36. Morse, D. E., Yanofsky, C.: The internal low-efficiency promoter of the tryptophan operon of Escherichia coli. J. molec. Biol. 38, 447–451 (1968).Google Scholar
  37. Newton, N. A., Beckwith, J. R., Zipser, D., Brenner, S.: Nonsense mutants and polarity in the lac operon of Escherichia coli. J. molec. Biol. 14, 290–296 (1965).Google Scholar
  38. Novick, R. P., Maas, W. K.: Control by endogenously synthesized arginine of the formation of ornithine transcarbamylase in Escherichia coli. J. Bact. 81, 236–240 (1961).Google Scholar
  39. Prozesky, O. W.: Transductional analysis of arginine less mutants in Proteus mirabilis. J. gen. Microbiol. 54, 127–143 (1968).Google Scholar
  40. Ramakrishnan, T., Adelberg, E. A.: Regulatory mechanisms in the biosynthesis of isoleucine and valine. II. Identification of two operator genes. J. Bact. 89, 654–660 (1965).Google Scholar
  41. Sand, G.: Le contrôle génétique de la biosynthèse de l'arginine chez Escherichia coli K-12. Thesis, University of Brussels, 1969.Google Scholar
  42. Sand, G., Glansdorff, N.: L'opéron arginine d'Escherichia coli. Arch. int. Phys. Biochem. 75, 568–569 (1967).Google Scholar
  43. Sanderson, K. E.: Information transfer in Salmonella typhimurium. Proc. nat. Acad. Sci. (Wash.) 53, 1335–1340.Google Scholar
  44. Somerville, F. L., Yanofsky, Ch.: On the translation of the A gene of the tryptophan messenger RNA. J. molec. Biol. 8, 616–619 (1964).Google Scholar
  45. Taylor, A. L., Trotter, C. D.: Revised linkage map of Escherichia coli. Bact. Rev. 31, 332–353 (1967).Google Scholar
  46. Thomas, R., Leurs, C., Dambly, C., Parmentier, D., Lambert, L., Brachet, P., Lefebvre, N., Mousset, S., Porcheret, J., Szpirier, J., Wauters, D.: Isolation and characterization of new sus (amber) mutants of bacteriophage. Mutation. Res. 4, 735–741 (1967).Google Scholar
  47. Vogel, H. J.: Aspects of repression in the regulation of enzyme synthesis: pathway wide control and enzyme specific response. Cold Spr. Harb. Symp. quant. Biol. 26, 163–172 (1961).Google Scholar
  48. —, Bacon, D. F.: Gene aggregation: evidence for a coming together of functionally related, not closely linked genes. Proc. nat. Acad. Sci. (Wash.) 55, 1456–1459 (1966).Google Scholar
  49. —, Baumberg, S., Bacon, D. F., Jones, E. E., Unger, L., Vogel, R. H.: Gene-Ribosome-Enzymes organization in the arginine system of Escherichia coli, in Organizational Biosynthesis (Vogel, Lampen, Bryson, eds.), p. 223–234. New York: Acad. Press 1967.Google Scholar
  50. Whitfield, H. J., Jr., Martin, R. G., Ames, B. N.: Classification of aminotransferase (C gene) mutants in the histidine operon. J. molec. Biol. 21, 335–355 (1966).Google Scholar
  51. Yanofsky, Ch., Ito, J.: Nonsense codons and polarity in the tryptophan operon. J. molec. Biol. 21, 313–334 (1966).Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • R. Cunin
    • 1
    • 2
  • D. Elseviers
    • 1
    • 2
  • G. Sand
    • 1
    • 2
  • G. Freundlich
    • 1
    • 2
  • G. Glansdorff
    • 1
    • 2
  1. 1.Laboratory of MicrobiologyBrussels UniversityBrussels 7Belgium
  2. 2.Research Institute of the C.E.R.I.A.Brussels 7Belgium

Personalised recommendations