Advertisement

Molecular and General Genetics MGG

, Volume 195, Issue 1–2, pp 159–163 | Cite as

Restoration of virulence of Vir region mutants of Agrobacterium tumefaciens strain B6S3 by coinfection with normal and mutant Agrobacterium strains

  • L. Otten
  • H. De Greve
  • J. Leemans
  • R. Hain
  • P. Hooykaas
  • J. Schell
Article

Summary

Three avirulent Tn7 insertion mutants mapping in the vir E region of the Agrobacterium tumefaciens plasmid pTiB6S3 regain virulence by co-infection with several wildtype strains and with a number of strains carrying mutations in other regions of the Ti plasmid. This finding indicates that during tumour induction normal Agrobacterium strains produce a diffusable factor required for transformation and might allow the isolation of such a factor.

Keywords

Agrobacterium Insertion Mutant Agrobacterium Strain Region Mutant Tumour Induction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Greve D, Decraemer H, Seurinck J, Van Montagu M, Schell J (1981) The functional organization of the octopine Agrobacterium tumefaciens plasmid p TiB6S3. Plasmid 6:235–248Google Scholar
  2. De Vos G, De Beuckeleer M, Van Montagu M, Schell J (1981) Restriction endonuclease mapping of the octopine tumor-inducing plasmid pTiAch5 of Agrobacterium tumefaciens. Plasmid 6:249–253Google Scholar
  3. Engler G, Depicker A, Maenhaut R, Villarroel R, Van Montagu M, Schell J (1981) Physical mapping of DNA base sequence homologies between an octopine and a nopaline Ti plasmid of Agrobacterium tumefaciens. J Mol Biol 152:183–208Google Scholar
  4. Garfinkel DJ, Nester EW (1980) Agrobacterium tumefaciens mutants affected in Crown Gall tumorigenesis and octopine catabolism. J Bacteriol 144:732–743Google Scholar
  5. Hernalsteens JP, De Greve H, Van Montagu M, Schell J (1978) Mutagenesis by insertion of the drug resistance transposon Tn7 applied to the Ti plasmid of Agrobacterium tumefaciens. Plasmid 1:218–225Google Scholar
  6. Hille J, Klasen I, Schilperoort R (1982) Construction and application of R prime plasmids, carrying different segments of an octopine Ti plasmid from Agrobacterium tumefaciens for complementation of vir genes. Plasmid 7:107–118Google Scholar
  7. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort R (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti plasmid. Nature 303:179–180Google Scholar
  8. Holsters M, Silva B, Genetello C, Engler G, Van Vliet F, De Block M, Villaroel R, Van Montagu M, Schell J (1978a) Spontaneous formation of cointegrates of the oncogenic Ti-plasmid and the wide-host range P-plasmid RP4. Plasmid 1:456–467Google Scholar
  9. Holsters M, Silva B, Van Vliet F, Hernalsteens JP, Genetello C, Van Montagu M, Schell J (1978b) In vivo transfer of the Ti plasmid of Agrobacterium tumefaciens to Escherichia coli. Mol Gen Genet 163:335–338Google Scholar
  10. Holsters M, Silva B, Van Vliet F, Genetello C De Block M, Dhaese P, Depicker A, Inzé D, Engler G, Villaroel R, Van Montagu M, Schell J (1980) The functional organization of the nopaline Agrobacterium tumefaciens plasmid pTiC58. Plasmid 3:212–230Google Scholar
  11. Hooykaas PJJ, Den Dulk-Ras H, Ooms G, Schilperoort RA (1980) Interactions between octopine and nopaline plasmids in Agrobacterium tumefaciens. J Bacteriol 143:1295–1306Google Scholar
  12. Iyer VN, Klee HJ, Nester EW (1982) Units of genetic expression in the virulence region of a plant tumor-inducing plasmid of Agrobacterium tumefaciens. Mol Gen Genet 188:418–424Google Scholar
  13. Klapwijk PM, Van Beelen P, Schilperoort RA (1979) Isolation of a recombination deficient Agrobacterium tumefaciens mutant. Mol Gen Genet 173:171–175Google Scholar
  14. Klee HJ, Gordon MP, Nester EW (1982) Complementation analysis of Agrobacterium tumefaciens Ti plasmid mutations affecting oncogenicity. J Bacteriol 150:327–331Google Scholar
  15. Leemans J, Deblaere R, Willmitzer L, De Greve H, Hernalsteens JP, Van Montagu M, Schell J (1982) Genetic identification of functions of TL-DNA transcripts in octopine Crown Galls. EMBO J 1:147–152Google Scholar
  16. Ooms G, Klapwijk PM, Poulis JA, Schilperoort RA (1980) Characterization of Tn904 insertions in octopine Ti plasmid mutants of Agrobacterium tumefaciens. J Bacteriol 144:82–91Google Scholar
  17. Ooms G, Hooykaas PJJ, Van Veen R, Van Beelen P, Regensburg-Tuink TJG, Schilperoort RA (1982) Octopine Ti-plasmid deletion mutants of Agrobacterium tumefaciens with emphasis on the right side of the T-region. Plasmid 7:15–29Google Scholar
  18. Otten L (1982) Lysopine dehydrogenase as an early marker in Crown Gall transformation. P1 Sc Lett 25:15–27Google Scholar
  19. Van Larebeke N, Genetello C, Hernalsteens JP, Depicker A, Zaenen I, Messens E, Van Montagu M, Schell J (1977) Transfer of Ti plasmids between Agrobacterium strains by mobilization with the conjugative plasmid RP4. Mol Gen Genet 152:119–124Google Scholar
  20. Willmitzer L, Simons G, Schell J (1982) The TL-DNA in octopine crown gall tumors codes for seven well defined polyadenylated transcripts. EMBO J 1:139–146Google Scholar
  21. Zambryski P, Joos H, Genetello C, Van Montagu M, Schell J (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J (in press)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • L. Otten
    • 1
  • H. De Greve
    • 2
  • J. Leemans
    • 2
  • R. Hain
    • 1
  • P. Hooykaas
    • 3
  • J. Schell
    • 1
  1. 1.Max-Planck-Institut für ZüchtungsforschungKöln 30Federal Republic of Germany
  2. 2.Laboratorium Genetische VirologieVrije UniversiteitBrusselBelgium
  3. 3.Department of BiochemistryState University of LeidenLeidenThe Netherlands

Personalised recommendations