Molecular and General Genetics MGG

, Volume 133, Issue 4, pp 299–316

Physiology and genetics of carbamoylphosphate synthesis in Escherichia coli K12

  • Max Mergeay
  • Daniel Gigot
  • Jacques Beckmann
  • Nicolas Glansdorff
  • André Piérard
Article

Summary

76 mutants have been isolated in which the function of the single carbamoylphosphate synthetase of Escherichia coli K 12 is affected. A wide variety of phenotypes have been observed among these mutants, the most typical ones being: requirement for arginine and uracil, arginineless behaviour, sensitivity towards arginine and sensitivity towards uracil. The mutations have been localized by reciprocal transduction and deletion mapping; all are clustered in the same locus, car. The study of carbamoylphosphate synthesizing activities of these mutants and the combination of car mutations in various in vivo as well as in vitro complementation tests lead to the conclusion that car contains two genes: carA, covering the left part of the locus and coding for the “glutamine subunit” of the enzyme; carB, to the right, governing the synthesis of the heavy subunit of the enzyme.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abd-El-Al, A., Ingraham, J. L.: Control of carbamylphosphate synthesis in Salmonella typhimurium. J. biol. Chem. 244, 4033–4038 (1969a)Google Scholar
  2. Abd-El-Al, A., Ingraham, J. L.: Cold sensitivity and other phenotypes resulting from mutation in pyrA gene. J. biol. Chem. 244, 4039–4045 (1969b)Google Scholar
  3. Abd-El-Al, A., Kessler, D. P., Ingraham, J. L.: Arginine-auxotrophic phenotype resulting from a mutation in the pyrA gene of Escherichia coli b/r. J. Bact. 97, 466–468 (1969)Google Scholar
  4. Adelberg, E. A., Mandel, M., Chein Ching Chen, G.: Optimal conditions for mutagenesis by N-methyl-N′-nitro-N-nitrosoguanidine in Escherichia coli K12. Biochem. biophys. Res. Commun. 18, 788–795 (1965)Google Scholar
  5. Anderson, P. M., Meister, A.: Evidence for an actvated form of carbon dioxide in the reaction catalyzed by Escherichia coli carbamylphosphate synthetase. Biochemistry 4, 2803–2809 (1965)Google Scholar
  6. Anderson, P. M., Meister, A.: Control of carbamylphosphate synthetase by purine and pyrimidine nucleotides. Biochemistry 5, 3164–3169 (1966)Google Scholar
  7. Anderson, P. M., Marvin, S. V.: Effect of allosteric effectors and adenosine triphosphate on the aggregation and rate of inhibition by N-ethylmaleimide of carbamylphosphate synthetase of Escherichia coli. Biochemistry 9, 171–178 (1970)Google Scholar
  8. Bachman, B. J.: Pedigrees of some mutant strains of Escherichia coli K12. Bact. Rev. 36, 525–557 (1972)Google Scholar
  9. Beckwith, J. R., Pardee, A. B., Austrian, R., Jacob, F.: Coordination of the synthesis of the enzymes in the pyrimidine pathway of E. coli. J. molec. Biol. 5, 618–634 (1962)Google Scholar
  10. Charles, H. P., Roberts, G. A.: Carbon dioxide as a growth factor for mutants of Escherichia coli. J. gen. Microbiol. 51, 211–224 (1968)Google Scholar
  11. Davis, R. H.: Channeling in Neurospora metabolism. In: Organizational biosynthesis (ed. J. H. Vogel, J. O. Lampen and V. Bryzon), p. 303–322. New York: Academic Press 1967Google Scholar
  12. Eisenstark, A.: Linkage of arginine sensitive (ars) and uracil-arginine requiring (pyrA) loci of Salmonella typhimurium. Nature (Lond.) 213, 1263–1264 (1967)Google Scholar
  13. Glansdorff, N.: Topography of cotransducible arginine mutations in Escherichia coli K12. Genetics 51, 167–179 (1965)Google Scholar
  14. Gorini, L., Kalman, S. M.: Control by uracil of carbamylphosphate synthesis in Escherichia coli. Biochim. biophys. Acta (Amst.) 69, 355–360 (1963)Google Scholar
  15. Gorini, L., Kaufman, H.: Selecting bacterial mutants by the penicillin method. Science 131, 604–605 (1960)Google Scholar
  16. Hartman, P. E., Hartman, Z., Serman, D.: Complementation mapping by abortive transduction of histidine requiring mutants. J. gen. Microbiol. 22, 354–368 (1960)Google Scholar
  17. Hopwood, D. A.: Genetic analysis and genome structure in Streptomyces coelicolor. Bact. Rev. 31, 373–403 (1969)Google Scholar
  18. Issaly, I. M., Issaly, A. S., Reissig, J. L.: Carbamylphosphate biosynthesis in Bacillus subtilis. Biochim. biophys. Acta (Amst.) 198, 482–494 (1970)Google Scholar
  19. Jacob, F.: Transduction of lysogeny in Escherichia coli. Virology 1, 207–220 (1955)Google Scholar
  20. Kalman, S. M., Duffield, P. H., Brozozowski, I.: Purification and properties of a bacterial carbamylphosphate synthetase. J. biol. Chem. 241, 1871–1877 (1966)Google Scholar
  21. Khedouri, E., Anderson, P. M., Meister, A.: Selective inactivation of the glutamine binding site of Escherichia coli carbamylphosphate synthetase by 2-amino-4-oxo-5-chloropentanoic acid. Biochemistry 5, 3552–3556 (1966)Google Scholar
  22. Loutit, J. S.: Studies on nutritionally deficient strains of Pseudomonas aeruginosa. 1. The production by X-rays and the isolation of nutritionally deficient strains. Aust. J. exp. Biol. med. Sci. 30, 287–294 (1952)Google Scholar
  23. Low, B.: Formation of merodiploids in mating with a class of rec- recipient strain of Escherichia coli K12. Proc. nat. Acad. Sci. (Wash.) 60, 160–167 (1968)Google Scholar
  24. Martin, R. G.: Frameshift mutants in the histidine operon of Salmonella typhimurium. J. molec. Biol. 26, 311–328 (1967)Google Scholar
  25. Mergeay, M.: Physiologie et génétique d'un branchement métabolique: la biosynthèse du carbamylphosphate chez Escherichia coli. Thèse de doctorat, Université Libre de Bruxelles (1969)Google Scholar
  26. Novick, P. R., Maas, W. K.: Control by endogenously synthesized arginine of the formation of ornithine transcarbamylase in Escherichia coli. J. Bact. 81, 236–240 (1961)Google Scholar
  27. Oeschger, N. S., Hartman, P. E.: ICR-induced frameshift mutations in the histidine operon of Salmonella. J. Bact. 101, 490–504 (1970)Google Scholar
  28. Piérard, A.: Control of the activity of Escherichia coli carbamoylphosphate synthetase by antagonistic allosteric effectors. Science 154, 1572–1573 (1966)Google Scholar
  29. Piérard, A., Glansdorff, N., Mergeay, M., Wiame, J.-M.: Control of the biosynthesis of carbamoylphosphate in Escherichia coli. J. molec. Biol. 14, 23–26 (1965)Google Scholar
  30. Piérard, A., Glansdorff, N., Yashphe, J.: Mutations affecting uridine monophosphate pyrophosphorylase or the argR gene in Escherichia coli. Effects on carbamoylphosphate and pyrimidine biosynthesis and on uracil uptake. Molec. gen. Genet. 118, 235–245 (1972)Google Scholar
  31. Piérard, A., Grenson, M., Glansdorff, N., Wiame, J.-M.: A comparison of the organization of carbamoylphosphate synthesis in Saccharomyces cerevisiae and Escherichia coli, based on genetical and biochemical evidences. In: The enzymes of glutamine metabolism (ed. S. Prusiner and E. R. Stadtman), p. 483–503. New York: Academic Press 1973Google Scholar
  32. Piérard, A., Wiame, J.-M.: Regulation and mutation affecting a glutamine dependent formation of carbamylphosphate in Escherichia coli. Biochem. biophys. Res. Commun. 15, 76–81 (1964)Google Scholar
  33. Pinkus, M. L., Meister, A.: Identification of a reactive cystein residue at the glutamine binding site of carbamylphosphate synthetase. J. biol. Chem. 247, 6119–6127 (1972)Google Scholar
  34. Prozesky, O. M., Coetzee, J. N.: Linked transduction in Proteus mirabilis. Nature (Lond.) 209, 1262 (1966)Google Scholar
  35. Roepke, R. R., Mercer, F. E.: Lethal and sublethal effects of X rays on Escherichia coli as related to the yield of biochemical mutant. J. Bact. 54, 731–743 (1947)Google Scholar
  36. Syvanen, J. M., Roth, J. R.: Structural genes for catalytic and regulatory subunits of aspartate transcarbamylase. J. molec. Biol. 76, 363–368 (1973)Google Scholar
  37. Taylor, A. L., Trotter, C. D.: Linkage map of Escherichia coli strain K-12. Bact. Rev. 36, 504–524 (1972)Google Scholar
  38. Trotta, P. P., Burt, M. E., Haschenmeyer, R. H., Meister, A.: Reversible dissociation of carbamylphosphate synthetase into a regulated synthesis subunit and a subunit required for glutamine utilization. Proc. nat. Acad. Sci. (Wash.) 68, 2599–2603 (1971)Google Scholar
  39. Van Montagu, M., Leurs, C., Brachet, P., Thomas, R.: A set of amber mutants of bacteriophages lambda and MS2 suitable for the identification of suppressors. Mutation Res. 4, 698–700 (1967)Google Scholar
  40. Vyas, S., Maas, W. K.: Feedback inhibition of acetylglutamate synthetase by arginine in Escherichia coli. Arch. Biochem. Biophys. 100, 542–546 (1963)Google Scholar
  41. Whitfield, H. J., Martin, R. G., Ames, B. N.: Classification of aminotransferase (C genes) mutants in the histidine operon. J. molec. Biol. 21, 335–355 (1966)Google Scholar
  42. Yan, Y., Demerec, M.: Genetic analysis of pyrimidine mutants of Salmonella typhimurium. Genetics 52, 643–651 (1965)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Max Mergeay
    • 1
    • 2
    • 3
  • Daniel Gigot
    • 1
    • 2
  • Jacques Beckmann
    • 1
    • 2
    • 4
  • Nicolas Glansdorff
    • 1
    • 2
  • André Piérard
    • 1
    • 2
  1. 1.Laboratoire de Microbiologie de l'Université Libre de Bruxelles, Erfelijkheidsleer en MikrobiologieVrije Universiteit BrusselBruxelles
  2. 2.Institut de Recherches du C.E.R.I.A.Bruxelles
  3. 3.Department of RadiobiologyS.C.K./C.E.N.MolBelgium
  4. 4.Department of Molecular BiologyWeizmann InstituteRehovothIsrael

Personalised recommendations