Applied Physics A

, Volume 56, Issue 5, pp 445–448 | Cite as

Two-dimensional electron-hole pair diffusivities in thin GaAs/AlGaAs Quantum Wells

  • H. Hillmer
  • C. W. Tu
Surfaces And Multilayers


Diffusivities of two-dimensional electron-hole pairs in thin GaAs/AlGaAs Quantum Wells (QWs) are studied experimentally and theoretically as functions of temperature and well-width. With growing well-widths, increasing diffusivities are observed for fixed Al-contents. Experimental diffusivities for the lateral carrier motion in continuously as well as in interrupted-grown thin QWs of different barrier Al-content are presented for T>150 K. Increasing diffusivities are observed for rising temperatures in the range T≳190 K. A comparison of the experimental data and results of theoretical model calculations indicates that the increase is partly related to thermal dissociation of excitons into free carrier pairs. The effective diffusivity of this two-component system is calculated using a system of rate equations and considering acoustic-deformation-potential scattering, polar-optical scattering and barrier-alloy-disorder scattering.


73.50.Bk 73.20.Mf 73.20.Dx 73.60.Br 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Hegarty, M.D. Sturge: J. Opt. Soc. Am. B 2, 1143 (1985)Google Scholar
  2. 2.
    D.C. Reynolds, K.R. Evans, C.E. Stutz, P.W. Yu: Appl. Phys. Lett. 60, 962 (1992)Google Scholar
  3. 3.
    H. Hillmer, A. Forchel, S. Hansmann, M. Morohashi, E. Lopez, H.P. Meier, K. Ploog: Phys. Rev. B 39, 10901 (1989)Google Scholar
  4. 4.
    H. Hillmer, A. Forchel, C.W. Tu, R. Sauer: Semicond. Sci. Technol. 7, B 235 (1992)Google Scholar
  5. 5.
    H. Hillmer, S. Hansmann, A. Forchel: Erratum for Phys. Rev. B 39, 10901 (1989) = Ref. 3 in this paper in press. The content of the erratum is as follows: The first term of (A1) on the right hand side: 1/βi has to be replaced by 1/2βi. The correct theoretical values corresponding to Fig. 14 are higher and should read: μbal=1.9×105, 3.2×105 and 6×107 cm2/Vs for L z=4.8 and 15 nm, respectivelyGoogle Scholar
  6. 6.
    W. Pickin, J.R. David: Appl. Phys. Lett. 56, 268 (1990)Google Scholar
  7. 7.
    V.V. Estropov, B.V. Tsarenkov: Sov. Phys.-Semicond. 4, 782 (1970)Google Scholar
  8. 7a.
    E.L. Nolle: Sov. Phys.-Sol. State 9, 90 (1967)Google Scholar
  9. 7b.
    B.K. Ridley: Phys. Rev. B 41, 12190 (1990)Google Scholar
  10. 8.
    W. Heywang, H.W. Pötzl: Bandstructure and Current Transport, ed. by W. Heywang, R. Müller, Springer Ser. Semiconductor-Electronics, Vol. 3 (Springer, Berlin, Heidelberg 1976) p. 60 (in German)Google Scholar
  11. 9.
    Y.P. Varshni: Physica 34, 149 (1967)Google Scholar
  12. 9a.
    K.P. O'Donnell, X. Chen: Appl. Phys. Lett. 58, 2924 (1991)Google Scholar
  13. 10.
    E.S. Koteles, J.Y. Chi: Phys. Rev. B 37, 6332 (1988)Google Scholar
  14. 11.
    S.-H. Wei, A. Zunger: J. Appl. Phys. 63, 5794 (1988)Google Scholar
  15. 12.
    Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, Group 3, Vol. 17, Semiconductors, Part a, Physics of Group IV Elements and III–Compounds, ed. by K.H. Hellwege (Springer, Berlin, Heidelberg 1982) Vol. 22, Part a, Intrinsic Properties of Group IV Elements and III–V, II–VI and I–VII Compounds, ed. by O. Madelung (Springer, Berlin, Heidelberg 1987) pp. 218, 222–224, 234, 247Google Scholar
  16. 13.
    H. Hillmer: Technical Report DBP Telekom, FI 65 TB 29 E (1991) pp. 1–17Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • H. Hillmer
    • 1
  • C. W. Tu
    • 2
  1. 1.Forschungs- und TechnologiezentrumDeutsche Bundespost TelekomDarmstadtGermany
  2. 2.AT & T Bell LaboratoriesMurray HillUSA

Personalised recommendations