Applied Physics B

, Volume 57, Issue 5, pp 303–307

Amplification in Ni-like Nb at 204.2 Å pumped by a table-top laser

  • S. Basu
  • P. L. Hagelstein
  • J. G. Goodberlet
  • M. H. Muendel
  • S. Kaushik


We identified for the first time the 3d94d1S − 3d94p1P line in Ni-like Nb at 204.2 Å that was predicted to show gain. When pumped with a train of pulses containing less than 1 J per pulse, significant emission was recorded at 204.2 Å following the second and the third pulses. We measured the small signal gain coefficient per Joule of incident laser energy to be 1.49±0.42 cm−1 J−1 for this laser transition, which is higher by several orders of magnitude than that reported for other collisional laser systems in this wavelength range.


32.30.Rj 42.55.Vc 42.60.Lh 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Suckewer, C.H. Skinner, H. Milchberg, C. Keane, D. Voorhees: Phys. Rev. Lett. 55, 1753 (1985)Google Scholar
  2. 2.
    D.L. Matthews, P.L. Hagelstein, M.D. Rosen, M.J. Eckart, N.M. Ceglio, A.U. Hazi, H. Medecki, B. MacGowan, J. Trebes, B.L. Whitten, E.M. Campbell, C.W. Hatcher, A.M. Hawryluk, R.L. Kauffman, L.D. Pleasance, G. Rambach, J.H. Scofield, G. Stone, T.A. Weaver: Phys. Rev. Lett. 54, 110 (1985)Google Scholar
  3. 3.
    S. Maxon, P. Hagelstein, K. Reed, J. Scofield: J. Appl. Phys. 57, 971 (1985)Google Scholar
  4. 4.
    B.J. MacGowan, S. Maxon, P.L. Hagelstein, C.J. Keane, R.A. London, D.L. Matthews, M.D. Rosen, J.H. Scofield, D.A. Whelan: Phys. Rev. Lett. 559, 2157 (1987)Google Scholar
  5. 5.
    B.K. MacGowan, L.B. DaSilva, D.J. Fields, C.J. Keane, J.A. Koch, R.A. London, D.L. Matthews, S. Maxon, S. Mrowka, A.L. Osterheld, J.H. Scofield, G. Shimkaveg, J.E. Trebes, R.S. Walling: Phys. Fluids B 4, 2326 (1992)Google Scholar
  6. 6.
    C.H. Skinner, D. Kim, D. Voorhees, S. Suckewer: J. Opt. Soc. Am. B 7, 2042 (1990)Google Scholar
  7. 7.
    T. Hara, K. Ando, N. Kusakabe, H. Yashiro, Y. Aoyagi: Jpn. J. Appl. Phys. 6, L1010 (1989)Google Scholar
  8. 8.
    P.L. Hagelstein: Short Wavelength Coherent Radiation: Generation and Applications, ed. by R.W. Falcone, J. Kirz (Optical Society of America, Washington, DC 1988) p. 28Google Scholar
  9. 9.
    P.L. Hagelstein: Solid State Lasers III, SPIE 1627, 340 (1992)Google Scholar
  10. 10.
    M. Muendel, S. Basu, J.G. Goodberlet, M. Biembaum, P.L. Hagelstein: 3rd Int'l Coll. X-ray Lasers, Schliersee, Germany, paper P-13 (1992) M.H. Muendel: PhD Thesis, MIT, Cambridge, MA (1992)Google Scholar
  11. 11.
    U. Feldman, G.A. Doshek, D.K. Prinz, D.J. Nagel: J. Appl. Phys. 47, 1341 (1976)Google Scholar
  12. 12.
    J. Reader, U. Feldman: J. Opt. Soc. Am. 70, 317 (1980)Google Scholar
  13. 13.
    U. Litzen, J. Reader: Phys. Rev. A 36, 5159 (1987)Google Scholar
  14. 14.
    J.F. Wyart, A.N. Ryabtsev: Phys. Scr. 33, 215 (1986)Google Scholar
  15. 15.
    S. Basu, J. Goodberlet, M. Muendel, S. Kaushik, P.L. Hagelstein: 3rd Int'l Coll. X-ray Lasers, Schliersee, Germany (1992) p. 71Google Scholar
  16. 16.
    G.J. Linford, E.R. Peressini, W.R. Sooy, M.L. Spaeth: Appl. Opt. 13, 379 (1974)Google Scholar
  17. 17.
    Technical data on type 667 film, Polaroid Corporation (1992)Google Scholar
  18. 18.
    S. Basu, P.L. Hagelstein: J. Appl. Phys. 69, 1853 (1991)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • S. Basu
    • 1
  • P. L. Hagelstein
    • 1
  • J. G. Goodberlet
    • 1
  • M. H. Muendel
    • 1
  • S. Kaushik
    • 1
  1. 1.Research Laboratory of ElectronicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations