Applied Physics B

, Volume 51, Issue 1, pp 9–16

Stimulated raman scattering of fuel droplets

Chemical concentration and size determination
  • William P. Acker
  • Ali Serpengüzel
  • Richard K. Chang
  • Steven C. Hill
Laser Diagnostics In Combustion

Abstract

The strong stimulated Raman scattering (SRS) from diesel fuel droplets has the potential of providing the relative concentration of multicomponent fuel and the absolute size of individual droplets. The morphology-dependent resonances (MDRs) of a sphere cause the droplet to act as an optical resonator which greatly lowers the SRS threshold. The number density, quality factor, and frequency shift of several MDRs are calculated as a function of the ratio of the index of refraction of the liquid and the surrounding gas, which approaches unity at the thermodynamic critical condition for the fuel spray. The SRS spectra of monodispersed droplets of toluene, pentane, Exxon-Aromatic-150, and Mobil D-2 are presented. The exponential growth region of the SRS intensity I1S as a function of the input laser intensity Iinput is investigated for the toluene carbon ring breathing mode v2 and the pentane C-H stretching region. The I1S ratio of toluene and pentane is measured as a function of the ratio of the toluene and pentane concentration for monodispersed droplets. The reduced fluctuation in I1S when Iinput is changed from multimode to single-mode is displayed as a histogram of the I1S of the v2 mode of toluene droplets.

PACS

42.65.-k 42.65.Dr 42.68.Vs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Thurn, W. Kiefer: Appl. Opt. 24, 1515 (1985)Google Scholar
  2. 2.
    T.R. Lettieri, R.E. Preston: Opt. Commun. 54, 349 (1985)Google Scholar
  3. 3.
    K.H. Fung, I.N. Tang: J. Colloid Interfac. Sci. 130, 219 (1989)Google Scholar
  4. 4.
    A.C. Eckbreth: Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Massachusetts 1988) pp. 220–300Google Scholar
  5. 5.
    S.-X. Qian, J.B. Snow, R.K. Chang: Opt. Lett. 10, 499 (1985)Google Scholar
  6. 6.
    R.G. Pinnick, A. Biswas, R.L. Armstrong, H. Latifi, E. Creegan, V. Srivastava, G. Fernandez: Opt. Lett. 13, 1099 (1989)Google Scholar
  7. 7.
    M. Golombok, D.B. Pye: Chem. Phys. Lett. 151, 161 (1988)Google Scholar
  8. 8.
    M. Golombok, D.B. Pye: J. Phys. D: Appl. Phys. 22, 851 (1989)Google Scholar
  9. 9.
    S.C. Hill, R.E. Benner: J. Opt. Soc. Am. B 3, 1509 (1986)Google Scholar
  10. 10.
    P.W. Barber, S.C. Hill: In Optical Particle Sizing: Theory and Practice, ed. by G. Gouesbet, G. Grehan (Plenum, New York 1988) pp. 43–53Google Scholar
  11. 11.
    S.C. Ching, H.M. Lai, K. Young: J. Opt. Soc. Am. B 4, 1995 (1987)Google Scholar
  12. 12.
    J.-Z. Zhang, D.H. Leach, R.K. Chang: Opt. Lett. 13, 270 (1988)Google Scholar
  13. 13.
    D.S. Benincasa, P.W. Barber, J.-Z. Zhang, W.-F. Hsieh, R.K. Chang: Appl. Opt. 26, 1348 (1987)Google Scholar
  14. 14.
    J.B. Snow, S.-X. Qian, R.K. Chang: Opt. Lett. 10, 37 (1985)Google Scholar
  15. 15.
    S.-X. Qian, R.K. Chang: Phys. Rev. Lett. 56, 926 (1986)Google Scholar
  16. 16.
    C.F. Bohren, D.R. Huffman: Absorption and Scattering of Light by Small Particles (Wiley, New York 1983) pp. 93–104Google Scholar
  17. 17.
    S.C. Hill, R.E. Benner: In Optical Effects Associated with Small Particles, ed. by P.W. Barber, R.K. Chang (World Scientific, Singapore 1988) pp. 3–61Google Scholar
  18. 18.
    H.A. Haus: Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, New Jersey 1984) pp. 201–209Google Scholar
  19. 19.
    H.M. Lai, P.T. Leung, K. Young: Limitations on Photon Lifetime in Electromagnetic Quasi-Modes in Highly Transparent Microdroplets (to be published)Google Scholar
  20. 20.
    S.C. Hill, C.K. Rushforth, R.E. Benner, P.R. Conwell: Appl. Opt. 24, 2380 (1985)Google Scholar
  21. 21.
    P. Chylek: J. Opt. Soc. Am. 66, 285 (1976)Google Scholar
  22. 22.
    The C-H stretching region of pentane consists of symmetric and asymmetric CH2 and CH3 stretching modes. The data presented are integrated over the entire region. Selecting a single vibrational mode does not significantly improve either the exponential fit in Fig. 5a or the linearity of Fig. 5b but does reduce the signal-to-noise ratioGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • William P. Acker
    • 1
  • Ali Serpengüzel
    • 1
  • Richard K. Chang
    • 1
  • Steven C. Hill
    • 2
  1. 1.Department of Applied Physics and Center for Laser DiagnosticsYale UniversityNew HavenUSA
  2. 2.Department of Electrical and Computer EngineeringClarkson UniversityPotsdamUSA

Personalised recommendations