Probability Theory and Related Fields

, Volume 71, Issue 2, pp 307–320

Fermion martingales

  • J. M. Lindsay
Article

Summary

We show that strictly quasi-free Fermion martingales may be expressed as a sum of quantum stochastic integrals with respect to the Fermi creation and annihilation processes and a multiple of the identity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Applebaum, D.B., Hudson, R.L.: Fermion Itô's formula and stochastic evolutions. Commun. Math. Phys. 96, 473–496 (1984)Google Scholar
  2. 2.
    Barnett, C., Streater, R.F., Wilde, I.F.: The Itô-Clifford integral. J. Funct. Anal. 48, 172–212 (1982)Google Scholar
  3. 3.
    Barnett, C., Streater, R.F., Wilde, I.F.: Quasi-free quantum stochastic integrals for the CAR and CCR. J. Funct. Anal. 52, 19–47 (1983)Google Scholar
  4. 4.
    Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics, Vol. II. Berlin Heidelberg New York: Springer 1979Google Scholar
  5. 5.
    Evans, D.E.: Completely positive quasi-free maps on the CAR algebra. Commun. Math. Phys. 70, 53–68 (1979)Google Scholar
  6. 6.
    Hudson, R.L., Lindsay, J.M.: A non-commutative martingale representation theorem for non-Fock quantum Brownian motion. J. Funct. Anal. 61, 202–221 (1985)Google Scholar
  7. 7.
    Hudson, R.L., Parthasarathy, K.R.: Quantum Itô's formula and stochastic evolutions. Commun. Math. Phys. 93, 301–323 (1984)Google Scholar
  8. 8.
    Lindsay, J.M.: PhD Thesis, Nottingham (1985)Google Scholar
  9. 9.
    Lindsay, J.M., Wilde, I.F.: On non-Fock Boson stochastic integrals. J. Funct. Anal. 64 (1985)Google Scholar
  10. 10.
    Parthasarathy, K.R.: Square integrable martingales orthogonal to every stochastic integral. Stochastic Processes Appl. 7, 1–7 (1978)Google Scholar
  11. 11.
    Takesaki, M.: Tomita's theory of modular Hilbert algebras and its applications. No 128, Berlin-Heidelberg-New York: Springer 1970Google Scholar
  12. 12.
    Marshall, N.: Private CommunicationGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • J. M. Lindsay
    • 1
  1. 1.School of MathematicsUniversity of BristolBristolUK
  2. 2.Department of MathematicsKing's CollegeLondonUK

Personalised recommendations