Advertisement

Applied Physics A

, Volume 57, Issue 4, pp 367–374 | Cite as

The role of excited species in UV-laser materials ablation

Part I: Photophysical ablation of organic polymers
  • B. Luk'yanchuk
  • N. Bityurin
  • S. Anisimov
  • D. Bäuerle
Surfaces And Multilayers

Abstract

UV-laser ablation is described in terms of a two-level system in which the excitation energy is dissipated via stimulated emission, thermal relaxation, and activated desorption of excited species. For thermal relaxation times tT>10−9 s and ΔE* ≪ ΔE (activation energies for excited-state and ground-state species) the model predicts high ablation rates at moderate surface temperatures, typically below 2000° C.

PACS

82.65 82.50 42.10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.C. Paine, J.C. Bravman (eds.): Laser Ablation for Materials Synthesis. MRS Symp. Proc., Vol. 191 (MRS, Pittsburgh, PA 1990)Google Scholar
  2. 2.
    J.C. Miller, R.F. Haglund, Jr. (eds.): Laser Ablation - Mechanisms and Applications, Lect. Notes Phys., Vol. 389 (Springer, Berlin, Heidelberg 1991)Google Scholar
  3. 3.
    E. Fogarassy, S. Lazare (eds.): Laser Ablation of Electronic Materials - Basic Mechanisms and Applications, Proc. E-MRS, Vol. 4 (North-Holland, Amsterdam 1992)Google Scholar
  4. 4.
    R. Srinivasan, B. Braren: Chem. Rev. 89, 1303 (1989)Google Scholar
  5. 4a.
    R. Srinivasan: In Interfaces under Laser Irradiation, NATO ASI Series, ed. by L.D. Laude, D. Bäuerle, M. Wautelet (Nijhoff, Dordrecht 1987) p. 359Google Scholar
  6. 5.
    D. Bäuerle, B. Luk'yanchuk, P. Schwab, X.Z. Wang, E. Arenholz: in Ref. [3] p. 39Google Scholar
  7. 6.
    S.R. Cain, F.C. Burns, C.E. Otis: J. Appl. Phys. 71, 4107 (1992)Google Scholar
  8. 7.
    S.R. Cain, F.C. Burns, C.E. Otis, B. Braren: J. Appl. Phys. 72, 5172 (1992)Google Scholar
  9. 8.
    R. Sauerbrey, G.H. Pettit: Appl. Phys. Lett. 55, 421 (1989)Google Scholar
  10. 9.
    S. Küper, J. Brannon, K. Brannon: Appl. Phys. A 56, 43 (1993)Google Scholar
  11. 10.
    G.H. Pettit, R. Sauerbrey: Appl. Phys. A 56, 51 (1993)Google Scholar
  12. 11.
    J. Guillet: Polymer Photophysics and Photochemistry. An introduction to the study of photoprocesses in macromolecules. (Cambridge Univ. Press, Cambridge 1985)Google Scholar
  13. 12.
    Y.A. Bykovskii, V.N. Lisyutenko, M.M. Potapov, A.A. Chistyakov: Sov. J. Quant. Electron. 16, 667 (1986)Google Scholar
  14. 13.
    G. Arjavalingam, G. Hougham, J.P. LaFemina: Polymer 31, 840 (1990)Google Scholar
  15. 14.
    B.J. Garrison, R. Srinivasan: J. Appl. Phys. 57, 2909 (1985)Google Scholar
  16. 15.
    S.I. Anisimov, M.I. Tribel'skii: Sov. Sci Rev: Sect. A; Phys. Rev. 8, 259 (1987)Google Scholar
  17. 16.
    T.L. Cottrell: Strength of Chemical Bonds (Butterworths, London 1958)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • B. Luk'yanchuk
    • 1
  • N. Bityurin
    • 1
  • S. Anisimov
    • 1
  • D. Bäuerle
    • 1
  1. 1.Angewandte PhysikJohannes-Kepler-Universität LinzLinzAustria

Personalised recommendations