Molecular and General Genetics MGG

, Volume 216, Issue 1, pp 37–43

Accumulation of the cytochrome c oxidase subunits I and II in yeast requires a mitochondrial membrane-associated protein, encoded by the nuclear SCO1 gene

  • Marion Schulze
  • Gerhard Rödel


The yeast nuclear SCO1 gene is required for accumulation of the mitochondrially synthesized cytochrome c oxidase subunits I and II (COXI and COXII). We cloned and characterized the SCO1 gene. It codes for a 0.9 kb transcript. DNA sequence analysis predicts a 33 kDa protein. As shown by in vitro transcription and translation experiments in combination with import studies on isolated mitochodria, this protein is matured into a 30 kDa polypeptide which is tightly associated with a mitochondrial membrane. The possible function of the SCO1 gene product in the assembly of cytochrome c oxidase is discussed.

Key words

DNA sequence PET gene Saccharomyces cerevisiae Mitochondrial import cytochrome c oxidase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennetzen JL, Hall BD (1982) Codon selection in yeast. J Biol Chem 257:3026–3031Google Scholar
  2. Bonitz GS, Coruzzi G, Thalenfeld BE, Tzagoloff A, Macino G (1980) Assembly of the mitochondrial membrane system: structure and nucleotide sequence of the gene coding for subunit 1 of yeast cytochrome oxidase. J Biol Chem 255:11927–11941Google Scholar
  3. Capaldi RA, Malatesta F, Darley-Usmar VM (1983) Structure of cytochrome c oxidase. Biochim Biophys Acta 726:135–148Google Scholar
  4. Corruzi G and Tzagoloff A (1979) Assembly of the mitochondrial membrane system: DNA sequence of subunit 2 of yeast cytochrome oxidase. J Biol Chem 254:9324–9330Google Scholar
  5. Costanzo MC, Fox TD (1986) Product of Saccharomyces cerevisiae nuclear gene PET494 activates translation of specific mitochondrial mRNA. Mol Cell Biol 6:3694–3703Google Scholar
  6. Costanzo MC, Fox TD (1988) Specific translational activation by nuclear gene products occurs in the 5′ untranslated leader of a yeast mitochondrial mRNA. Proc Natl Acad Sci USA 85:2677–2681Google Scholar
  7. Costanzo MC, Seaver EC, Fox TD (1986) At least two nuclear gene products are specifically required for translation of a single yeast mitochondrial mRNA. EMBO J 5:3637–3641Google Scholar
  8. Daum G, Böhni PC, Schatz G (1982) Import of proteins into mitochondria: cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J Biol Chem 257:13028–13033Google Scholar
  9. Dieckmann CL, Tzagoloff A (1985) Assembly of the mitochondrial membrane system: CBP6, a yeast nuclear gene necessary for synthesis of cytochrome b. J Biol Chem 260:1513–1520Google Scholar
  10. Douglas MG, McCammon MT, Vassarotti A (1986) Targeting proteins into mitochondria. Microbiol Rev 50:166–178Google Scholar
  11. Dowhan W, Bibus RC, Schatz G (1985) The cytoplasmically-made subunit IV is necessary for assembly of cytochrome c oxidase in yeast. EMBO J 4:179–184Google Scholar
  12. Fox TD (1979) Five TGA “stop” codons occur within the translated sequence of the yeast mitochondrial gene for cytochome c oxidase subunit II. Proc Natl Acad Sci USA 76:6534–6538Google Scholar
  13. Fujiki Y, Hubbard AL, Fowlern S, Lazarow PB (1982) Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol 93:97–102Google Scholar
  14. Groot GSP, Poyton RO (1975) Oxygen control of cytochrome c oxidase synthesis in isolated mitochondria from Saccharomyces cerevisiae. Nature 255:238–240Google Scholar
  15. Hartl F-U, Schmidt B, Wachter E, Weiss H, Neupert W (1986) Transport into mitochondria and intramitochondrial sorting of the Fe/S protein of ubiquinol-cytochrome c reductase. Cell 47:939–951Google Scholar
  16. Hartl F-U, Ostermann J, Guiard B, Neupert W (1987) Successive translocation into and out of the mitochondrial matrix: targeting of proteins to the intermembrane space by a bipartite signal peptide. Cell 51:1027–1037Google Scholar
  17. Hurt EC, van Loon APGM (1986) How proteins find mitochondria and intramitochondrial compartments. Trends Biochem Sci 11:204–207Google Scholar
  18. Hurt EC, Pesold-Hurt B, Suda K, Oppliger W, Schatz G (1985) The first twelve amino acids (less than half of the pre-sequence) of an imported mitochondrial protein can direct mouse cytosolic dihydrofolate reductase into the yeast mitochondrial matrix. EMBO J 4:2061–2068Google Scholar
  19. Kloeckener-Gruissem B, McEwen JE, Poyton RO (1987) Nuclear functions required for cytochrome c oxidase biogenesis in Saccharomyces cerevisiae: multiple trans-acting nuclear genes exert specific effects on expression of each of the cytochrome c oxidase subunits encoded on mitochondrial DNA. Curr Genet 12:311–322Google Scholar
  20. Koerner TJ, Hill J, Tzagoloff A (1985) Cloning and characterization of the yeast nuclear gene for subunit 5 of cytochrome oxidase. J Biol Chem 260:9513–9515Google Scholar
  21. Kramer W, Drutsa V, Jansen HW, Kramer B, Pflugfelder M, Fritz HJ (1984) The gapped duplex DNA approach to oligonucleotide-directed mutation construction. Nucleic Acids Res 12:9441–9456Google Scholar
  22. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132Google Scholar
  23. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685Google Scholar
  24. Maarse AC, Van Loon APGM, Riezman H, Gregor I, Schatz G, Grivell LA (1984) Subunit IV of yeast cytochrome c oxidase: cloning and nucleotide sequencing of the gene and partial amino acid sequencing of the mature protein. EMBO J 3:2831–2837Google Scholar
  25. Mahler HR, Bastos RN, Feldman F, Flury U, Lin CC, Perlman PS, Phan SH (1975) Biogenetic autonomy of mitochondrial and its limits. In: Tzagoloff A (ed) Membrane biogenesis. Plenum Press, New York, pp 15–61Google Scholar
  26. McEwen JE, Ko C, Kloeckner-Gruissem B, Poyton RO (1986) Nuclear functions required for cytochrome c oxidase biogenesis in Saccharomyces cerevisiae. J Biol Chem 261:11872–11879Google Scholar
  27. Patterson TE, Poyton RO (1986) COX8, the structural gene for yeast cytochrome c oxidase subunit VIII. J Biol Chem 261:17192–17197Google Scholar
  28. Poutre CG, Fox TD (1987) PET111, a Saccharomyces cerevisiae nuclear gene required for translation of the mitochondrial mRNA encoding oxidase subunit II. Genetics 115:637–647Google Scholar
  29. Power SD, Lochrie MA, Sevario KA, Patterson TE, Poyton RO (1984) The nuclear-coded subunits of yeast cytochrome c oxidase: I. Fractionation of the holoenzyme into chemically pure polypeptides and the identification of two new subunits using solvent extraction and reversed phase high performance liquid chromatography. J Biol Chem 259:6564–6570Google Scholar
  30. Rao JKM, Argos P (1986) A conformational preference parameter to predict helices in integral membrane proteins. Biochim Biophys Acta 869:197–214Google Scholar
  31. Rechsteiner M, Rogers S, Rote K (1987) Protein structure and intracellular stability. Trends Biochem Sci 12:390–394Google Scholar
  32. Riezmann H, Hay R, Witte C, Nelson N, Schatz G (1983) Yeast mitochondrial outer membrane specifically binds cytoplasmically synthesized precursors of mitochondrial proteins. EMBO J 2:1113–1118Google Scholar
  33. Rödel G (1986) Two nuclear genes, CBS1 and CBS2, are required for translation of mitochondrial transcripts bearing the 5′ untranslated COB leader. Curr Genet 11:41–45Google Scholar
  34. Rödel G, Fox TD (1987) The yeast nuclear gene CBS1 is required for translation of mitochondrial mRNAs bearing the COB 5′ untranslated leader. Mol Gen Genet 206:45–50Google Scholar
  35. Rödel G, Körte A, Kaudewitz F (1985) Mitochondrial suppression of a yeast nuclear mutation which affects the translation of the mitochondrial apocytochrome b transcript. Curr Genet 9:641–648Google Scholar
  36. Saltzgaber-Müller J, Schatz G (1978) Heme is necessary for accumulation and assembly of cytochrome c oxidase subunits in Saccharomyces cerevisiae. J Biol Chem 253:305–310Google Scholar
  37. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467Google Scholar
  38. Schatz G (1987) Signals guiding proteins to their correct locations in mitochondria. Eur J Biochem 165:1–6Google Scholar
  39. Schatz G, Mason TL (1974) The biosynthesis of mitochondrial proteins. Annu Rev Biochem 43:51–87Google Scholar
  40. Schulze M, Rödel G (1988) SCO1, a yeast nuclear gene essential for accumulation of mitochondrial cytochrome c oxidase subunit II. Mol Gen Genet 211:492–498Google Scholar
  41. Séraphin B, Simon M, Faye G (1985) Primary structure of a gene for subunit V of the cytochrome c oxidase from Saccharomyces cerevisiae. Curr Genet 9:435–439Google Scholar
  42. Sherman F, Fink GR, Lawrence CW (1986) In: Methods in Yeast Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  43. Thalenfeld BE, Tzagoloff A (1980) Assembly of the mitochondrial membrane system: sequence of the oxi2 gene of yeast mitochondrial DNA. J Biol Chem 255:6173–6180Google Scholar
  44. Van Heijne G (1986) Mitochondrial targeting sequences may form amphiphilic helices. EMBO J 5:1335–1342Google Scholar
  45. Weiss-Brummer B, Guba R, Haid A, Schweyen RJ (1979) Fine structure of OXI1, the mitochondrial gene coding for subunit II of yeast cytochrome c oxidase. Curr Genet 1:75–83Google Scholar
  46. Woodrow G, Schatz G (1979) The role of oxygen in the biosynthesis of cytochrome c oxidase of yeast mitochondria. J Biol Chem 254:6088–6093Google Scholar
  47. Wright RM, Ko C, Cumsky MG, Poyton RO (1984) Isolation and sequence of the structural gene for cytochrome c oxidase subunit VI from Saccharomyces cerevisiae. J Biol Chem 259:15401–15407Google Scholar
  48. Wright RM, Dircks LK, Poyton RO (1986) Characterization of COX9, the nuclear gene encoding the yeast mitochondrial protein cytochrome c oxidase subunit VIIa. J Biol Chem 261:17183–17191Google Scholar
  49. Zwizinski C, Schleyer M, Neupert W (1984) Proteinaceous receptors for the import of mitochondrial precursor proteins. J Biol Chem 259:7850–7856Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Marion Schulze
    • 1
  • Gerhard Rödel
    • 1
  1. 1.Institut für Genetik und Mikrobiologie der Universität MünchenMünchen 19Germany
  2. 2.Labor für Molekulare Biologie und Allgemeine PathologieInstitut für Pathologie und Rechtsmedizin der Universität UlmMünchen 45Germany

Personalised recommendations