Applied Physics B

, Volume 56, Issue 3, pp 147–156 | Cite as

Kinetic modeling of the photolytic XeF(CA) laser

  • R. E. BeverlyIII
Article

Abstract

A comprehensive kinetic model and numerical code were developed to simulate photolytic excitation and lasing in gaseous media pumped by intense, broadband optical sources. The model considers transport of pump radiation through a nonlinear dispersive medium coupled with chemical and lasing kinetics describing the temporal and spatial evolution of particle species and intracavity lasing photons. Either planar or cylindrical geometry can be chosen to approximate the experimental configuration. The kinetic model is generally applicable to any photolytically pumped lasing scheme. Initial simulations were performed for the XeF(CA) laser and computational results are compared with the experiments of Zuev et al. [3,4]. Internal losses due to refractive-index gradients associated with the photodissociation wave must be included to obtain agreement between the model and experiments.

PACS

42.55.Gp 52.80Mg 52.80.Qj 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.L. Nighan, M.C. Fowler: IEEE J. QE-25, 791–802 (1989)Google Scholar
  2. 2.
    V.S. Zuev, A.V. Kanaev, L.D. Mikheev, D.B. Stavrovskii: Trudy Fiz. Inst. Acad. Nauk SSSR 125, 3–19 (1980)Google Scholar
  3. 2a.
    N.K. Bibinov, I.P. Vinogradov, V.S. Zuev, A.V. Kanaev, L.D. Mikheev, D.B. Stavrovskii, A.P. Shirokikh: Usp. Fotoniki, 8, 51–111 (1983)Google Scholar
  4. 2b.
    V.S. Zuev, L.D. Mikheev: Photochemical Lasers (Harwood, Chur 1991) Sect. 5.6Google Scholar
  5. 3.
    V.S. Zuev, L.D. Mikheev, D.B. Stavrovskii: Sov. J. Quantum Electron 14, 728–729, 1174–1178 (1984)Google Scholar
  6. 4.
    V.S. Zuev, G.N. Kashnikov, V.V. Kirilenko, S.B. Mamaev, V.A. Sorokin, V.F. Sukhorukov: Sov. J. Quantum Electron 19, 748–750 (1989)Google Scholar
  7. 5.
    R.W.F. Gross, L.E. Schneider, S.T. Amimoto: Appl. Phys. Lett. 53, 2365–2367 (1988)Google Scholar
  8. 6.
    A.S. Kamrukov, N.P. Kozlov, Yu.S. Protasov: Proc. SPIE 1397, 137–144 (1991)Google Scholar
  9. 7.
    J.S. Cohen, O.P. Judd: J. Appl. Phys. 55, 2659–2671 (1984)Google Scholar
  10. 8.
    J.S. Cohen, O.P. Judd: Phys. Rev. A 27, 3146–3157 (1983)Google Scholar
  11. 9.
    P.J. Davis, I. Polonsky: In Handbook of Mathematical Functions, ed. by M. Abramowitz, I.A. Segun (Dover, New York 1968) Chap. 25Google Scholar
  12. 10.
    F.K. Rutkovskii: J. Appl. Spectrosc. (USSR) 13, 1424–1429 (1970)Google Scholar
  13. 11.
    N.K. Bibinov, I.P. Vinogradov, L.D. Mikheev, D.B. Stavrovskii: Sov. J. Quantum Electron. 11, 1178–1181 (1981)Google Scholar
  14. 11a.
    N.K. Bibinov, I.P. Vinogradov: Opt. Spectrosc. (USSR) 57, 213–215 (1984)Google Scholar
  15. 12.
    N. Nishida, T. Takashima, F. K. Tittel, F. Kannari, M. Obara: J. Appl. Phys. 67, 3932–3940 (1990)Google Scholar
  16. 13.
    H.C. Brashears, D.W. Setser: J. Chem. Phys. 76, 4932–4946 (1982)Google Scholar
  17. 14.
    R. Burnham, N.W. Harris: J. Chem. Phys. 66, 2742–2743 (1977)Google Scholar
  18. 15.
    J.G. Eden, R.W. Waynant: J. Chem. Phys. 68, 2850–2854 (1978)Google Scholar
  19. 16.
    W.K. Bischel, D.J. Eckstrom, H.C. Walker Jr., R.A. Tilton: J. Appl. Phys. 52, 4429–4434 (1981)Google Scholar
  20. 17.
    J.F. Bott, R.F. Heidner, J.S. Holloway, J.B. Koffend, M.A. Kwok: J. Chem. Phys. 89, 4154–4162 (1988); Erratum: J. Chem. Phys. 90, 2529 (1989); J. Phys. Chem. 93, 4060–4063 (1989)Google Scholar
  21. 18.
    S.C. Kurzius: LAMP reaction models for analysis of chemical lasers. Lockheed Missiles and Space Company, Report No. RK-CR-75-31, Vol. III (1975)Google Scholar
  22. 19.
    S.W. Benson: Thermochemical Kinetics (Wiley, New York 1976) Sect. 3.6Google Scholar
  23. 20.
    H. Helm, D.L. Huestis, M.J. Dyer, D.C. Lorents: J. Chem. Phys. 79, 3220–3226 (1983)Google Scholar
  24. 21.
    G. Black, R.L. Sharpless, D.C. Lorents, D.L. Huestis, R.A. Gutcheck, T.D. Bonifield, D.A. Helms, G.K. Walters: J. Chem. Phys. 75, 4840–4846 (1981)Google Scholar
  25. 22.
    F. Schreiner, G.N. McDonald, C.L. Chernick: J. Phys. Chem. 72, 1162–1166 (1968)Google Scholar
  26. 23.
    D.E. Gray (ed.): American Institute of Physics Handbook, 3rd edn. (AIP, New York 1972) Sect. 4hGoogle Scholar
  27. 24.
    D.W. Osborne, H.E. Flotow, J.G. Malm: J. Chem. Phys. 57, 4670–4675 (1972)Google Scholar
  28. 25.
    P. Sulzer, K. Wieland: Helv. Phys. Acta 25, 653–676 (1952)Google Scholar
  29. 26.
    U. Nielsen, W.H.E. Schwarz: Chem. Phys. 13, 195–202 (1976)Google Scholar
  30. 27.
    E.S. Pysh, J. Jortner, S.A. Rice: J. Chem. Phys. 40, 2018–2032 (1964)Google Scholar
  31. 28.
    J.F. Bott, R.F. Heidner, J.S. Holloway, J.B. Koffend: Chem. Phys. 148, 411–416 (1990)Google Scholar
  32. 29.
    J.M. Hyman: Los Alamos National Laboratory, Report No. LA-7595-M (1979)Google Scholar
  33. 30.
    A.C. Hindmarsh: In Scientific Computing, ed. by R.S. Stepleman (North-Holland, Amsterdam 1983) pp. 55–64Google Scholar
  34. 31.
    D.E. Amos: ACM Trans. Math. Software 9, 467–493 (1983)Google Scholar
  35. 32.
    V.S. Zuev, G.N. Kashnikov, N.P. Kozlov, S.B. Mamaev, V.K. Orlov: Sov. J. Quantum Electron. 16, 1665–1667 (1986)Google Scholar
  36. 33.
    S.N. Bugrimov, A.S. Kamrukov, G.N. Kashnikov, N.P. Kozlov, P.A. Ovchinnikov, A.G. Opekan, Yu.S. Protasov, T.S. Shchepanyuk: Sov. J. Quantum Electron. 16, 44–50 (1986)Google Scholar
  37. 34.
    V.S. Zuev, A.V. Kanaev, L.D. Mikheev: Sov. J. Quantum Electron. 13, 1232–1234 (1983)Google Scholar
  38. 35.
    M. Born, E. Wolf: Principles of Optics, 4th edn. (Pergamon, Oxford 1970) Sect. 2.3.3Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • R. E. BeverlyIII
    • 1
  1. 1.R.E. Beverly III and AssociatesWorthingtonUSA

Personalised recommendations