Advertisement

Applied Physics A

, Volume 58, Issue 2, pp 129–136 | Cite as

The influence of thermal diffusion on laser ablation of metal films

  • E. Matthias
  • M. Reichling
  • J. Siegel
  • O. W. Käding
  • S. Petzoldt
  • H. Skurk
  • P. Bizenberger
  • E. Neske
Surfaces And Multilayers

Abstract

Single-shot ablation thresholds of nickel and gold films in the thickness range from 50 nm to 7 μm have been measured for 14 ns laser pulses at 248 nm, using photoacoustic shock wave detection in air. The metal films were deposited on fused silica substrates. The ablation threshold was found to increase linearly with film thickness up to the thermal diffusion length of the film. Beyond this point it remains independent of film thickness. The proportionality between threshold fluence and thickness allows the prediction of ablation thresholds of metal films from the knowledge of their optical properties, evaporation enthalpies and thermal diffusivities. Physically it proves that ablation is driven by the energy density determined by the thermal diffusion length. A simple thermodynamic model describes the data well. Thermal diffusivities, an essential input for this model, were measured using the technique of transient thermal gratings. In addition, the substrate dependence of the ablation threshold was investigated for 150 nm Ni films.

PACS

68.60.Dv 79.20.Ds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.M. Wood: Laser Damage in Optical Materials (Adam Hilger, Bristol 1986)Google Scholar
  2. 2.
    M. von Allmen: Laser-Beam Interactions with Materials, Springer Ser. Mater. Sci., Vol. 2 (Springer, Berlin, Heidelberg 1987)Google Scholar
  3. 3.
    I.W. Boyd: Laser Processing of Thin Films and Microstructures, Springer Ser. Mater. Sci., Vol. 3 (Springer, Berlin, Heidelberg 1987)Google Scholar
  4. 4.
    E. Fogarassy, S. Lazare (eds.): Laser Ablation of Electronic Materials (Elsevier, Amsterdam 1992)Google Scholar
  5. 5.
    D. Bäuerle, B. Luk'yanchuk, P. Schwab, X.Z. Wang, E. Arenholz: [4], p.Google Scholar
  6. 6.
    S.V. Babu, G.C. D'Couto, F.D. Egitto: J. Appl. Phys. 72, 692 (1992) and references thereinGoogle Scholar
  7. 7.
    J.H. Brannon, D. Scholl, E. Kay: Appl. Phys A 52, 160 (1991)Google Scholar
  8. 8.
    S. Küper, J. Brannon, K. Brannon: Appl. Phys. A 56, 43 (1993)Google Scholar
  9. 9.
    A.H. Guenther, J.K. Mciver: Thin Solid Films 163, 403 (1988)Google Scholar
  10. 10.
    D.L. Decker, L.G. Koshigoe, E.G. Ashley: NBS Spec. Publ. 727, 291 (1986)Google Scholar
  11. 11.
    D. Ristau, X.C. Dang, J. Ebert: NBS Spec. Publ. 727, 298 (1986)Google Scholar
  12. 12.
    S.M.J. Akhtar, D. Ristau, J. Ebert: NIST Spec. Publ. 752, 345 (1988)Google Scholar
  13. 13.
    M.R. Lange, J.K. Mciver, A.H. Guenther: Thin Solid Films 125, 143 (1985)Google Scholar
  14. 14.
    M.Z. Fuka, J.K. Mciver, A.H. Guenther: NIST Spec. Publ. 801, 576 (1990)Google Scholar
  15. 15.
    J.M. Hicks, L.E. Urbach, E.W. Plummer, H.-L- Dai: Phys. Rev. Lett. 61, 2588 (1988)Google Scholar
  16. 16.
    J.O. Porteus, D.L. Decker, W.N. Faith, D.J. Grandjean, S.C. Seitel, M.J. Soileau: IEEE J. QE-17, 2078 (1981)Google Scholar
  17. 17.
    Y. Jee, M.F. Becker, R.M. Walser: J. Opt. Soc. Am. B 5, 648 (1988)Google Scholar
  18. 18.
    J.E. Andrew, P.E. Dyer, R.D. Greenough, P.H. Key: Appl. Phys. Lett. 43, 1076 (1983)Google Scholar
  19. 19.
    S. Petzoldt, A.P. Elg, M. Reichling, J. Reif, E. Matthias: Appl. Phys. Lett. 53, 2005 (1988)Google Scholar
  20. 20.
    A. Mandelis (ed.): Principles and Perspectives of Photothermal and Photoacoustic Phenomena (Elsevier, New York 1992)Google Scholar
  21. 21.
    D.L. Decker: NIST Spec. Publ. 752, 89 (1988)Google Scholar
  22. 22.
    J.C. Lambropoulos, M.R. Jolly, C.A. Amsden, S.E. Gilman, M.J. Sinicropi, D. Diakomihalis, S.D. Jacobs: J. Appl. Phys. 66, 4230 (1989)Google Scholar
  23. 23.
    R.T. Swimm: SPIE 1441, 45 (1991)Google Scholar
  24. 24.
    J. Jauregui, E. Matthias: Appl. Phys. A 54, 35 (1992)Google Scholar
  25. 25.
    O.W. Käding, E. Matthias, R. Zachai, H.-J. Füßer, P. Münzinger: Diamond Relat. Mater. 2, 1185 (1993)Google Scholar
  26. 26.
    G. Busse, H.G. Walther: [20], p. Chap. 5,Google Scholar
  27. 27.
    H.J. Eichler, P. Günter, D.W. Pohl: Laser-Induced Dynamic Gratings, Springer Ser. Opt. Sci., Vol. 50 (Springer, Berlin, Heidelberg 1986)Google Scholar
  28. 28.
    O. Käding, E. Matthias: UnpublishedGoogle Scholar
  29. 29.
    R.C. Weast (ed.): Handbook of Chemistry and Physics, 67th edn. (CRC, Boca Raton 1986–1987)Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • E. Matthias
    • 1
  • M. Reichling
    • 1
  • J. Siegel
    • 1
  • O. W. Käding
    • 1
  • S. Petzoldt
    • 1
  • H. Skurk
    • 1
  • P. Bizenberger
    • 2
  • E. Neske
    • 2
  1. 1.Fachbereich PhysikFreie Universität BerlinBerlinGermany
  2. 2.Fraunhofer-Institut für Physikalische MeßtechnikFreiburg i.Br.Germany

Personalised recommendations