Advertisement

Chromosoma

, Volume 57, Issue 4, pp 351–375 | Cite as

Characterization of Drosophila heterochromatin

I. staining and decondensation with hoechst 33258 and quinacrine
  • Maurizio Gatti
  • Sergio Pimpinelli
  • Gianfranco Santini
Article

Abstract

A number of preliminary experiments have shown that the fluorescence pattern of Hoechst 33258, as opposed to that of quinacrine, varies with the concentration of dye. The metaphase chromosomes of D. melanogaster, D. simulans, D. virilis, D. texana, D. hydei and D. ezoana have therefore been stained with two concentrations of H 33258 (0.05 and 0.5 μg/ml in phosphate buffer at pH 7) and with a single concentration of quinacrine (0.5% in absolute alcohol). The three fluorescence patterns so obtained were shown to be somewhat different in some of the species and the coincide in others. All three stainings gave an excellent longitudinal differentiation of heterochromatin while euchromatin fluoresced homogeneously. — Living ganglion cells of the six species mentioned above were treated with quinacrine and H 33258. Quinacrine induced a generalized lengthening and swelling of the chromosomes and H 33258 the decondensation of specific heterochromatic regions. — A correlation of the base composition of the satellite DNAs contained in the heterochromatin of the species studied with the relative fluorescence and decondensation patterns showed that: 1) the extremely fluorochrome bright areas and those decondensed are present only in species containing AT rich satellite DNA; 2) the opposite is not true since some AT-rich satellite DNAs are neither fluorochrome bright nor decondensed; 3) there is no good correspondence between Hoechst bright areas and the decondensed ones. — AT richness therefore appears to be a necessary but not sufficient condition both for bright fluorescence and decondensation. Some cytological evidence suggests that similarly AT rich satellite DNA's respond differently in fluorescence and decondensation because they are bound to different chromosomal proteins. — A combination of the results of fluorescence and decondensation revealed at least 14 types of heterochromatin; 4–7 of which are simultaneously present in the same species. Since closely related species (i.e. D. melanogaster and D. simulans; D. virilis and D. texana) show marked differences in the heterochromatic types they contain, it can be suggested that within the genus Drosophila qualitative variations of heterochromatin have played an important role in speciation.

Keywords

Related Species Ganglion Cell Base Composition Qualitative Variation Metaphase Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adkisson, K.P., Perreault, W.J., Gay, H.: Differential fluorescent staining of Drosophila chromosomes with quinacrine mustard. Chromosoma (Berl.) 34, 190–205 (1971)Google Scholar
  2. Baker, W.K.: Position-effect variegation. Advanc. Genet. 14, 133–169 (1968)Google Scholar
  3. Barigozzi, C., Dolfini, S., Fraccaro, M., Rezzonico Raimondi, G., Tiepolo, L.: In vitro study of the DNA replication patterns of somatic chromosomes of Drosophila melanogaster. Exp. Cell Res. 43, 231–234 (1966)Google Scholar
  4. Bram, S., Tougard, P.: Polymorphism of natural DNA. Nature (Lond.) 239, 128–131 (1972)Google Scholar
  5. Comings, D.E.: Mechanisms of chromosome banding VIII. Hoechst 33258-DNA interaction. Chromosoma (Berl.) 52, 229–243 (1975)Google Scholar
  6. Comings, D.E., Kovacs, B.W., Avelino, E., Harris, D.C.: Mechanisms of chromosome banding. V. Quinacrine banding. Chromosoma (Berl.) 50, 111–145 (1975)Google Scholar
  7. Corneo, G., Ginelli, E., Soave, C., Bernardi, G.: Isolation and characterization of mouse and Guinea pig satellite deoxyribonucleic acids. Biochemistry 7, 4373–4379 (1968)Google Scholar
  8. Ellison, J.R., Barr, H.J.: Differences in the quinacrine staining of the chromosomes of a pair of sibling species: Drosophila melanogaster and Drosophila simulans. Chromosoma (Berl.) 34, 424–435 (1971)Google Scholar
  9. Faccio Dolfini, S.: The distribution of repetitive DNA in the chromosomes of cultured cells of Drosophila melanogaster. Chromosoma (Berl.) 44, 383–390 (1974)Google Scholar
  10. Funaki, K., Matsui, S., Sasaki, M.: Location of nucleolar organizers in animal and plant chromosomes by means of an improved N-banding technique. Chromosoma (Berl.) 49, 357–370 (1975)Google Scholar
  11. Gall, J.G., Atherton, D.D.: Satellite DNA sequences in Drosophila virilis. J. molec. Biol. 85, 633–664 (1974)Google Scholar
  12. Gall, J.G., Cohen, E.H., Atherton, D.D.: The satellite DNAs of Drosophila virilis. Cold Spr. Harb. Symp. quant. Biol. 38, 417–422 (1973)Google Scholar
  13. Gall, J.G., Cohen, E.H., Polan, M.L.: Repetitive DNA sequences in Drosophila. Chromosoma (Berl.) 33, 319–344 (1971)Google Scholar
  14. Ganner, E., Evans, H.J.: The relationship between patterns of DNA replication and of quinacrine fluorescence in the human chromosome complement. Chromosoma (Berl.) 35, 326–341 (1971)Google Scholar
  15. Gatti, M.C., Tanzarella, C., Olivieri, G.: Variation with sex of irradiation induced chromosome damage in somatic cells of Drosophila melanogaster. Nature (Lond.) 247, 151–152 (1974a)Google Scholar
  16. Gatti, M., Tanzarella, C., Olivieri, G.: Analysis of the chromosome aberrations induced by X-rays in somatic cells of Drosophila melanogaster. Genetics 77, 701–719 (1974b)Google Scholar
  17. Gottesfeld, J.M., Bonner, J., Radda, G.K., Walker, I.O.: Biophysical studies on the mechanism of quinacrine staining of chromosomes. Biochemistry 13, 2937–2945 (1974)Google Scholar
  18. Gropp, A., Hilwig, I., Seth, P.K.: Fluorescence chromosome banding patterns produced by a benzimidazole derivative. Proc. 23rd Nobel Symp. (T. Caspersson and L. Zech, eds.). New York: Academic Press 1973Google Scholar
  19. Hannah, A.: Localization and function of heterochromatin in Drosophila melanogaster. Advanc. Genet. 4, 87–127 (1951)Google Scholar
  20. Heitz, E.: Die Somalische Heteropyknose bei Drosophila melanogaster und ihre genetische Bedeutung. Z. Zellforsch. 20, 237–87 (1934a)Google Scholar
  21. Heitz, E.: Über α- und β-Heterochromatin sowie Konstanz und Bau Chromomeren bei Drosophila. Biol. Zbl. 54, 588–609 (1934b)Google Scholar
  22. Hennig, W., Hennig, I., Stein, H.: Repeated sequences in the DNA of Drosophila and their localization in giant chromosomes. Chromosoma (Berl.) 32, 31–63 (1970)Google Scholar
  23. Hilwig, I., Gropp, A.: Decondensation of constitutive heterochromatin in L cell chromosomes by a benzimidazole compound (33258 Hoechst). Exp. Cell Res. 81, 474–477 (1973)Google Scholar
  24. Holmquist, G.: Hoechst 33258 fluorescent staining of Drosophila chromosomes. Chromosoma (Berl.) 49, 333–356 (1975a)Google Scholar
  25. Holmquist, G.: Organization and evolution of Drosophila virilis heterochromatin. Nature (Lond.) 257, 503–506 (1975b)Google Scholar
  26. Horton, I.H.: A comparison of the salivary gland chromosomes of Drosophila melanogaster and D. Simulans. Genetics 24, 234–243 (1939)Google Scholar
  27. Hsu, T.C.: Heterochromatin pattern in metaphase chromosomes of Drosophila melanogaster. J. Hered. 62, 285–287 (1971)Google Scholar
  28. Hsu, T.C.: Longitudinal differentiation of chromosomes. Ann. Rev. Genet. 7, 153–176 (1973)Google Scholar
  29. Hsu, T.C., Pathak, S., Shafer, D.A.: Induction of chromosome crossbanding by treating cells with chemical agents before fixation. Exp. Cell Res. 79, 484–487 (1973)Google Scholar
  30. Jalal, S.M., Clark, R.W., Hsu, T.C., Pathak, S.: Cytological differentiation of constitutive heterochromatin. Chromosoma (Berl.) 48, 391–403 (1974)Google Scholar
  31. Jones, K.W.: Chromosomal and Nuclear location of Mouse satellite DNA in individual cells. Nature (Lond.) 225, 912–915 (1970)Google Scholar
  32. Jones, K.W., Robertson, F.W.: Localization of reiterated nucleotide sequences in Drosophila and mouse by in situ hybridization of complementary RNA. Chromosoma (Berl.) 31, 331–345 (1970)Google Scholar
  33. Kaufmann, B.P.: Somatic mitoses of Drosophila melanogaster. J. Morph. 56, 125–155 (1934)Google Scholar
  34. Kurnit, D.M., Shafit, B.R., Maio, J.J.: Multiple satellite deoxyribonucleic acids in the calf and their relation to the sex chromosomes. J. molec. Biol. 81, 273–284 (1973)Google Scholar
  35. Latt, S.A.: Microfluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomes. Proc. nat. Acad. Sci. (Wash.) 70, 3395–3399 (1973)Google Scholar
  36. Latt, S.A., Brodie, S., Munroe, S.H.: Optical studies of complexes of quinacrine with DNA and chromatin: Implications for the fluorescence of cytological chromosome preparations. Chromosoma (Berl.) 49, 17–40 (1974)Google Scholar
  37. Latt, S.A., Wohlleb, J.C.: Optical studies of the interaction of 33258 Hoechst with DNA, chromatin, and metaphase chromosomes. Chromosoma (Berl.) 52, 297–316 (1975)Google Scholar
  38. Lindsley, D.L., Grell, E.H.: Genetic variations of Drosophila melanogaster. Carnegie Inst. Publ. 627 (1968)Google Scholar
  39. Lindsley, D.L., Sandler, L., Baker, B.B., Carpenter, A.T.C., Denell, R.E., Hall, J.C., Jacobs, P.A., Miklos, G.L.G., Davis, B.K., Gethmann, R.C., Hardy, R.W., Hessler, A., Miller, S.M., Nozawa, H., Parry, D.M., Gould-Somero, M.: Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics 71, 157–184 (1972)Google Scholar
  40. Matsui, S., Sasaki, M.: Differential staining of nucleolus organisers in mammalian chromosomes. Nature (Lond.) 246, 148–150 (1973)Google Scholar
  41. Mayfield, J.E., Ellison, J.R.: The organization of interphase chromatin in Drosophilidae. The self adhesion of chromatin containing the same DNA sequences. Chromosoma (Berl.) 52, 37–48 (1975)Google Scholar
  42. McGill, M., Pathak, S., Hsu, T.C.: Effects of ethidium bromide on mitosis and chromosomes: A possible material basis for chromosome stickiness. Chromosoma (Berl.) 47, 157–167 (1974)Google Scholar
  43. Michelson, A.M., Monny, C., Kovoor, A.: Action of quinacrine mustard on polynucleotides. Biochimie 54, 1129–1136 (1972)Google Scholar
  44. Pachmann, U., Rigler, R.: Quantum yield of acridines interacting with DNA of defined base sequences. Exp. Cell Res. 72, 602–608 (1972)Google Scholar
  45. Pathak, S., McGill, M., Hsu, T.C.: Actinomycin D effects on mitosis and chromosomes: sticky chromatids and localized lesions. Chromosoma (Berl.) 50, 79–88 (1975)Google Scholar
  46. Patterson, J.T., Stone, W.S.: Evolution in the genus Drosophila. New York: Macmillan 1952Google Scholar
  47. Peacock, W.J., Brutlag, D., Goldring, E., Appels, R., Hinton, C.W., Lindsley, D.L.: The organization of highly repeated DNA sequences in Drosophila melanogaster chromosomes. Cold Spr. Harb. Symp. quant. Biol. 38, 405–416 (1973)Google Scholar
  48. Pimpinelli, S., Gatti, M., De Marco, A.: Evidence for heterogeneity in heterochromatin of Drosophila melanogaster. Nature (Lond.) 256, 335–337 (1975)Google Scholar
  49. Pimpinelli, S., Pignone, D., Gatti, M., Olivieri, G.: X-ray induction of chromatid interchanges in somatic cells of Drosophila melanogaster: variations through the cell cycle of the pattern of rejoining. Mutation Res. 35, 101–110 (1976a)Google Scholar
  50. Pimpinelli, S., Santini, G., Gatti, M.: Characterization of Drosophila heterochromatin. II. Cand N-banding. Chromosoma (Berl.) 57, 377–386 (1976b)Google Scholar
  51. Rae, P.: Chromosomal distribution of rapidly reannealing DNA in Drosophila melanogaster. Proc. nat. Acad. Sci. (Wash.) 67, 1018–1025 (1970)Google Scholar
  52. Rocchi, A., Prantera, G., Pimpinelli, S., Di Castro, M.: Effects of Hoechst 33258 on Chinese hamster chromosomes. Chromosoma (Berl.) 56, 41–46 (1976)Google Scholar
  53. Rudkin, G.T.: Non replicating DNA in Drosophila. Genetics 61 (Suppl.), 227–238 (1969)Google Scholar
  54. Schnedl, W.: Giemsa banding quinacrine fluorescence and DNA replication in chromosomes of cattle (Bos taurus). Chromosoma (Berl.) 38, 319–328 (1972)Google Scholar
  55. Schnedl, W.: Banding patterns in chromosomes. Int. Rev. Cytol, Suppl. 4, 237–272 (1974)Google Scholar
  56. Selander, R.K., de la Chapelle, A.: The fluorescence of quinacrine mustard with nucleic acids. Nature (Lond.) New Biol. 245, 240–243 (1973)Google Scholar
  57. Simola, K., Selander, R.K., de la Chapelle, A., Corneo, G., Ginelli, E.: Molecular basis of chromosome banding. I. The effect of Mouse DNA fractions on two fluorescent dyes in vitro. Chromosoma (Berl.) 51, 199–205 (1975)Google Scholar
  58. Southern, D.M.: Base sequence and evolution of guinea-pig α-satellite DNA. Nature (Lond.) 227, 794–798 (1970)Google Scholar
  59. Travaglini, E., Petrovic, J., Schultz, J.: Satellite DNAs in the embryos of various species of the genus Drosophila. Genetics 72, 431–439 (1972)Google Scholar
  60. Vosa, C.G.: Heterochromatin recognition with fluorochromes. Chromosoma (Berl.) 30, 366–372 (1970a)Google Scholar
  61. Vosa, C.G.: The discriminating fluorescence patterns of the chromosomes of Drosophila melanogaster. Chromosoma (Berl.) 31, 446–451 (1970b)Google Scholar
  62. Weisblum, B., Haenssler, E.: Fluorometric properties of the bibenzimidazol derivative Hoechst 33258, a fluorescent probe specific for AT concentration in chromosomal DNA. Chromosoma (Berl.) 46, 255–260 (1974)Google Scholar
  63. Weisblum, B., Haseth, P. de: Quinacrine, a chromosome stain specific for deoxyadenylate-deoxythymidylate-rich regions in DNA. Proc. nat. Acad. Sci. (Wash.) 69, 629–632 (1972)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Maurizio Gatti
    • 1
  • Sergio Pimpinelli
    • 1
  • Gianfranco Santini
    • 1
  1. 1.Centro di Genetica Evolutiva del C.N.R.Istituto de Genetica, Università di Roma, Città UniversitariaRomaItaly

Personalised recommendations