Applied Physics B

, Volume 49, Issue 1, pp 69–72 | Cite as

The production of ions for single-ion traps

  • J. D. Sankey
  • A. A. Madej
Contributed Papers

Abstract

A new method of obtaining ions for electrodynamic traps at high vacuum is described, in which an oven produces both a beam of neutral atoms and an electron beam with which to ionize the atoms within the confinement volume of a trap.

PACS

34.50 35.80 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.G. Dehmelt: Phys. Scr. T22, 102 (1988)Google Scholar
  2. 2.
    D.J. Wineland: Science 226, 395 (1984)Google Scholar
  3. 3.
    A. De Marchi: Metrologia 18, 103 (1982)Google Scholar
  4. 4.
    Neutral atom traps require strong perturbing electromagnetic fields to overcome earth's gravity, see W.D. Phillips, P.L Gould, P.D. Lett: Science 239, 877 (1988). In the absence of gravity, the precision of cesium may be extended as far as that of any ionGoogle Scholar
  5. 5.
    L.A. Rawley, J.H. Taylor, M.M. Davis, D.W. Allan: Science 238, 761 (1987)Google Scholar
  6. 6.
    J. Coutandin, G. Werth: Appl. Phys. B29, 89 (1982)Google Scholar
  7. 7.
    S. Chu, L. Hollberg, J.E. Bjorkholm, A. Cable, A. Ashkin: Phys. Rev. Lett. 55, 48 (1985)Google Scholar
  8. 8.
    W. Ruster, J. Bonn, P. Peuser, N. Trautmann: Appl. Phys. B30, 83 (1983)Google Scholar
  9. 9.
    W. Lotz: Z. Phys. 232, 101 (1970)Google Scholar
  10. 10.
    G. Janik, W. Nagourney, H. Dehmelt: J. Opt. Soc. Am. B2, 1251 (1985)Google Scholar
  11. 11.
    J. King: King Laboratories, 127-T Solar St., Syracuse NY 13204 (private communication)Google Scholar
  12. 12.
    G.R. Janik: Laser Cooled Single Ion Spectroscopy of Magnesium and Barium (University of Washington, Washington 1984), p. 72Google Scholar
  13. 13.
    Y.S. Touloukian, D.P. DeWitt: Thermal Radiative Properties, Metallic Elements and Alloys (IFI/Plenum, New York 1970)Google Scholar
  14. 14.
    On this, and subsequent matters involving thermionic emission, the reader is referred to A.L. Reimann: Thermionic Emission (Chapman & Hall, London 1934)Google Scholar
  15. 14a.
    C. Herring, M.H. Nichols: Rev. Mod. Phys. 21, 185 (1949)Google Scholar
  16. 14b.
    W.B. Nottingham: Thermionic Emission (Handbuch der Physik XXI, Springer, Berlin 1956)Google Scholar
  17. 15.
    J.A. Becker: Phys. Rev. 34, 1323 (1929)Google Scholar
  18. 16.
    S.I. Kulichikhina, B.P. Nikonov: Russ. J. Phys. Chem. 41, 1167 (1967)Google Scholar
  19. 17.
    P. Clausing: Ann. Phys. 12, 976 (1932)Google Scholar
  20. 18.
    A.A. Madej, J.D. Sankey: Proc. 11th Int'l Conf. Atomic Physics, Paris, July 4–8, 1988, Atomic Physics 11 (World Scientific, Singapore 1989)Google Scholar
  21. 19.
    G.E. Moore, H.W. Allison: J. Chem. Phys. 23, 1609 (1955)Google Scholar
  22. 20.
    Th. Sauter, R. Blatt, W. Neuhauser, P.E. Toschek: Opt. Commun. 60, 287 (1986) Fig. 6Google Scholar
  23. 21.
    A.V. Vakhobov, T.T. Dzhuraev, B.N. Vigdorovich: Russ. J. Phys. Chem. 48, 1306 (1974)Google Scholar
  24. 22.
    M. Notin, J.C. Gachon, J. Hertz: J. Less-Common Met. 85, 205 (1982)Google Scholar
  25. 23.
    V.K. Kulifeev, G.P. Stanolevich, V.G. Kozlov: Izv. Vyssh. Ucheb. Zaved. Tsvet. Metal. 14, 108 (1971)Google Scholar
  26. 24.
    Dealt with by J.D. Jackson: Classical Electrodynamics (Wiley, New York 1975) pp. 122–127Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • J. D. Sankey
    • 1
  • A. A. Madej
    • 1
  1. 1.National Research Council of CanadaOttawaCanada

Personalised recommendations