Advertisement

Chromosoma

, Volume 52, Issue 3, pp 229–243 | Cite as

Mechanisms of chromosome banding

VIII. Hoechst 33258-DNA interaction
  • David E. Comings
Article

Abstract

The interaction of Hoechst 33258 with DNA has been examined to help clarify the mechanisms of banding. 1. In agreement with previous studies Hoechst fluorescence is enhanced to a greater degree in AT-rich compared to GC-rich DNA. 2. Hoechst causes an increase in the DNA Tm which is greater the higher the AT content of the DNA. 3. There is a decrease in extinction coefficient and shift in the adsorption spectra to a higher wavelength when Hoechst binds to DNA. 4. DNA is completely precipitated at a ratio of one dye molecule per base pair, and this precipitation is not affected by salt. 5. There is no increase in viscosity or change in the circular dichroism of DNA when bound to Hoechst. — These findings suggest Hoechst does not bind to DNA by intercalation or by ionic interaction with the phosphate groups, but rather binds by an attachment to the outside of the double DNA helix by interacting with the base pairs. This type of binding allows greater sensitivity to the base composition than occurs with intercalating agents. In this respect its binding is similar to that of dibutyl proflavine (Muller et al., 1973).

Keywords

Base Pair Developmental Biology Circular Dichroism Extinction Coefficient Phosphate Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Comings, D. E., Kovacs, B. W., Avelino, E., Harris, D. C.: Mechanisms of chromosome banding. IV. Quinacrine banding. Chromosoma (Berl.) 50, 111–145 (1975)Google Scholar
  2. Gall, J. G., Atherton, D. D.: Satellite DNA sequences in Drosophila virilis. J. molec. Biol. 85, 633–664 (1974)Google Scholar
  3. Galley, W. C., Purkey, R. M.: Spin-orbital probes of bimolecular structure. A model DNA-acridine system. Proc. nat. Acad. Sci. (Wash.) 69, 2198–2202 (1972)Google Scholar
  4. Gropp, A., Hilwig, I., Seth, P. K.: Fluorescence chromosome banding patterns produced by a benzimidazole derivative. In: Nobel Symp. 23, Chromosome Identification-Techniques and applications in biology and medicine (T. Caspersson and L. Zech, eds.), p. 300–306. New York, N.Y.: Academic Press, Inc. 1973Google Scholar
  5. Hilwig, I.: Verhalten tierischer Zellen und der Gewebekultur gegenüber einem basisch substituierten Benzimidazolderivat mit fluorochromierenden Eigenschaften. Z. Zellforsch. 104, 127–137 (1970)Google Scholar
  6. Hilwig, I, Gropp, A.: Staining of constitutive heterochromatin in mammalian chromosomes with a new fluorochrome. Exp. Cell Res. 75, 122–126 (1972)Google Scholar
  7. Holmquist, G. P.: Hoechst 33258 staining of Drosophila chromosomes. Chromosoma (Berl.) 49, 333–356 (1975)Google Scholar
  8. Jalal, S. M., Clark, R. W., Hsu, T. C., Pathak, S.: Cytological differentiation of constitutive heterochromatin. Chromosoma (Berl.) 48, 391–403 (1974)Google Scholar
  9. Latt, S. A.: Microfluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomes. Proc. nat. Acad. Sci. (Wash.) 70, 3395–3399 (1973)Google Scholar
  10. Latt, S. A., Davidson, R. L., Lin, M. S., Gerald, P. S.: Lateral asymmetry in the fluorescence of human Y chromosomes stained with 33258 Hoechst. Exp. Cell Res. 87, 425–429 (1974)Google Scholar
  11. Lin, M. S., Davidson, R. L.: Centric fusion, satellite DNA, and DNA polarity in mouse chromosomes. Science 185, 1179–1181 (1974)Google Scholar
  12. Lin, M. S., Latt, S.A., Davidson, R. L.: Identification of human and mouse chromosomes in human-mouse hybrids by centromere fluorescence. Exp. Cell Res. 87, 429–433 (1974)Google Scholar
  13. Muller, W., Crothers, D. M., Waring, M. J.: A non-intercalating proflavine derivative. Europ. J. Biochem. 39, 223–234 (1973)Google Scholar
  14. Peacocke, A. R.: The interaction of acridines with nucleic acids. In: Acridines (R.M. Acheson, ed.), p. 723–757. New York, N.Y.: Interscience Publishers, John Wiley & Sons 1973Google Scholar
  15. Peacocke, A. R., Skerrett, J. N. H.: The interaction of aminoacridines with nucleic acids. Faraday Soc. Trans. (Lond.) 52, 261–279 (1956)Google Scholar
  16. Perry, P., Wolff, S.: New Giemsa method for the differential staining of sister chromatids. Nature (Lond.) 251, 156–158 (1974)Google Scholar
  17. Raposa, T., Natarajan, A. T.: Fluorescence banding pattern of human and mouse chromosomes with a benzimidazol derivative (Hoechst 33258). Humangenetik 21, 221–226 (1974)Google Scholar
  18. Sarma, N. P., Natarajan, A. T.: Identification of heterochromatic regions in the chromosomes of rye. Hereditas (Lund) 74, 233–238 (1973)Google Scholar
  19. Seth, P. K., Gropp, A.: Study of constitutive heterochromatin with a new and simplified fluorescence staining technique. Genetics 44, 485–495 (1973)Google Scholar
  20. Van Holde, K. E.: Physical Biochemistry, p. 168–170. Englewood Cliffs, N. J., Prentice-Hall, Inc., 1971Google Scholar
  21. Weisblum, B.: Fluorescent probes of chromosomal DNA structure: three classes of acridines. Cold Spr. Harb. Symp. quant. Biol. 38, 441–449 (1973)Google Scholar
  22. Weisblum, B., Haenssler, E.: Fluorometric properties of the bibenzimidazole derivative Hoechst 33258, a fluorescent probe specific for AT concentration in chromosomal DNA. Chromosoma (Berl.) 46, 255–260 (1974)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • David E. Comings
    • 1
  1. 1.Department of Medical GeneticsCity of Hope National Medical CenterDuarteUSA

Personalised recommendations