Advertisement

Applied Physics B

, Volume 50, Issue 2, pp 137–144 | Cite as

Sensitive intracavity photoacoustic measurements with a CO2 waveguide laser

  • F. J. M. Harren
  • F. G. C. Bijnen
  • J. Reuss
  • L. A. C. J. Voesenek
  • C. W. P. M. Blom
Contributed Papers

Abstract

A photoacoustic intracavity configuration is presented; a resonant photoacoustic cell excited in its first longitudinal mode is placed inside the cavity of a CO2 waveguide laser. Due to the high laser power and the sharp intracavity focus, saturation effects occur in the excitation and relaxation process of absorbing C2H4 molecules. A more optimal configuration is applied to measure the C2H4 emission of several Rumex species. A detection sensitivity of 6 ppt (parts per trillion) C2H4 is reached, equivalent to a minimal detectable absorption of 1.8×10−10 cm−1.

PACS

07.60 43.85 42.60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.P. Zharov, V.S. Letokhov: Laser Opto Acoustic Spectroscopy, Springer Ser. Opt. Sci. 37 (Springer, Berlin, Heidelberg 1986)Google Scholar
  2. 2.
    G.L. Loper, J.A. Gelbwachs, S.M. Beck: Can J. Phys. 69, 1124 (1986)Google Scholar
  3. 3.
    H. Ahlberg, S. Lundqvist, S.T. Eng: Appl. Opt. 23, 2902 (1984)Google Scholar
  4. 4.
    S.T. Bernegger, P.L. Meyer, C. Widmer, M.W. Sigrist: In Photoacoustic and Photothermal Phenomena, ed. by P. Hess and J. Pelzl, Springer Ser. Opt. Sci. 58, (Springer, Berlin, Heidelberg 1987)Google Scholar
  5. 5.
    P. Perlmutter, S. Shtrikman, M. Slatkine: Appl. Opt. 18, 2267 (1979)Google Scholar
  6. 6.
    R. Gerlach, N.M. Amer: Appl. Phys. Lett. 32, 228 (1978)Google Scholar
  7. 7.
    D.K. Bassi, M.S. Spencer: Plant Cell Environm. 8, 161 (1985)Google Scholar
  8. 8.
    R. Gerlach, N.M. Amer: Appl. Phys. 23, 319 (1980)Google Scholar
  9. 9.
    K.P. Koch, W. Lahmann: Appl. Phys. Lett. 32, 289 (1978)Google Scholar
  10. 10.
    S. Shtrikman, M. Slatkine: Appl. Phys. Lett. 31, 830 (1977)Google Scholar
  11. 11.
    D.H. Leslie, G.L. Trusty: Appl. Opt. 20, 1941 (1981)Google Scholar
  12. 12.
    J. Röper, G. Chen, P. Hess: Appl. Phys. B 43, 57 (1987)Google Scholar
  13. 13.
    J.J. Degnan: Appl. Phys. 11, 1 (1976)Google Scholar
  14. 14.
    R.L. Abrams: IEEE J. QE-8, 838 (1972)Google Scholar
  15. 15.
    C.A. Hill, D.R. Hall: Appl. Opt. 24, 1283 (1985)Google Scholar
  16. 16.
    H. Kogelnik, T. Li: Proc. IEEE 54, 1312 (1966)Google Scholar
  17. 17.
    F. Harren: To be publishedGoogle Scholar
  18. 18.
    S.D. Bernegger, M.W. Sigrist: Appl. Phys. B 44, 125 (1987)Google Scholar
  19. 19.
    R.J. Brewer, C.W. Bruce, J.L. Mater: Appl. Opt. 21, 4092 (1982)Google Scholar
  20. 20.
    C.W.P.M. Blom: Waarnemen en verklaren, een beschouwing over plantenoecologie, Inaugural Address, Brakkenstein, Nijmegen (1985)Google Scholar
  21. 21.
    L.A.C.J. Voesenek, C.W.P.M. Blom: Can. J. Botany 65, 1638–1642 (1987)Google Scholar
  22. 22.
    L.A.C.J. Voesenek, C.W.P.M. Blom: Plant Cell Environm. 12, L 43–439 (1989)Google Scholar
  23. 23.
    L.A.C.J. Voesenek, C.W.P.M. Blom: Ethylene and flooding responses of Rumex species, in Biochemical and Physiological Aspects of Ethylene Production in Lower and Higher Plants, ed. by H.C. Lijsters et al.: (Kluwer, Dordrecht 1989) pp. 245–253Google Scholar
  24. 24.
    M.B. Jackson: Ann. Rev. Plant Physiol. 36, 145–174 (1985)Google Scholar
  25. 25.
    R.A. Rooth, A.J.L. Verhage, L.W. Wouters, L. van de Beld: Proc. 4th Int. Conf. on Infrared Physics, Zürich, Switzerland (1988) p. 593Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • F. J. M. Harren
    • 1
  • F. G. C. Bijnen
    • 1
  • J. Reuss
    • 1
  • L. A. C. J. Voesenek
    • 2
  • C. W. P. M. Blom
    • 2
  1. 1.Fysisch LaboratoriumKatholieke Universiteit Nijmegen, ToernooiveldNijmegenThe Netherlands
  2. 2.Experimentele PlantkundeKatholieke Universiteit Nijmegen, ToernooiveldNijmegenThe Netherlands

Personalised recommendations