, Volume 20, Issue 1, pp 54–74 | Cite as

Chromosome size and DNA content of species of anemone L. and related genera (Ranunculaceae)

  • Klaus Rothfels
  • Elizabeth Sexsmith
  • Margaret Heimburger
  • Margarida O. Krause


Relative amounts of DNA were determined by Feulgen cytophotometry in 22 diploid species of Ranunculaceae (n=7, 8, 9) representing six genera, and exhibiting large differences in chromosome size, but no marked differences in karyotype pattern. Chemical determination of absolute amounts of DNA for six of these species, allowed conversion of all the photometric data into absolute units of DNA. The mean DNA content per nucleus varied from.13×10−11gm in Aquilegia to 5.25×10−11gm in species of Anemone in the section Homalocarpus. The DNA values obtained appeared to be “quantized”, and data for the majority of species fitted a non-geometrical series with the observed relative terms: 1—8—12—16—20—24—40. The magnitude of these variations in DNA content, the preservation of the karyotype and the tendency towards a simple numerical progression in DNA values, lead us to prefer an interpretation of the evolution of DNA content in terms of differential polynemy to one postulating changes in size of genetic units in an unchanging number of strands per chromosome.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkin, N.B., G. Mattinson, W. Beçak, and S. Ohno: The comparative DNA content of 19 species of placental mammal, reptiles and birds. Chromosoma (Berl.) 17, 1–10 (1965).Google Scholar
  2. Behre, K.: Physiologische und genetische Untersuchungen an Drosera. Planta (Berl.) 7, 208–306 (1929).Google Scholar
  3. Blackburn, K.B.: Notes on the chromosomes of the Duckweeds (Lemnaceae) introducing the question of chromosome size. Proc. Univ. Durham Phil. Soc. 9, 84–90 (1933).Google Scholar
  4. Boraiah, G., and M. Heimburger: Cytotaxonomic studies on New World Anemome (section Eriocephalus) with woody rootstocks. Canad. J. Bot. 42, 891–922 (1964).Google Scholar
  5. Buttler, J.A.V.: Role of histones and other proteins in gene control. Nature (Lond.) 207, 1041–1042 (1965).Google Scholar
  6. Ceriotti, G.: A microchemical determination of desoxyribonucleic acid. J. biol. Chem. 198, 297–303 (1952).Google Scholar
  7. Chun, E.H.L., N.H. Vaughanjr., and A. Rich: The isolation and characterization of DNA associated with chloroplast preparations. J. molec. Biol. 7, 130–141 (1963).Google Scholar
  8. Fredga, K., and B. Santesson: Male meiosis in the Syrian, Chinese, and European Hamsters. Hereditas (Lund.) 52, 36–48 (1964).Google Scholar
  9. Gall, J.G.: Kinetics of deoxyribonuclease action on chromosomes. Nature (Lond.) 198, 36–38 (1963a);- Chromosomes and cytodifferentiation. In: Cytodifferentiation and macromolecular synthesis. New York: Academic Press 1963b.Google Scholar
  10. Gibor, A., and S. Granick: Plastids and mitochondria: inheritable systems. Science 145, 890–897 (1964).Google Scholar
  11. Gregory, W.C.: Phylogenetic and cytological studies in the Ranunculaceae Juss. Trans. Amer. Phil. Soc. 31, 443–521 (1941).Google Scholar
  12. Halkka, O.: A photometric study of the Luzula problem. Hereditas (Lund) 52, 81–88 (1964).Google Scholar
  13. Heimburger, M.: Cytotaxonomic studies in the genus Anemone. Canad. J. Bot. 37, 587–612 (1959);- Comparison of chromosome size in species of Anemone and their hybrids. Chromosoma (Berl.) 13, 328–340 (1962).Google Scholar
  14. Heitz, E.: Der Nachweis der Chromosomen. Vergleichende Studien über ihre Zahl, Größe und Form im Pflanzenreich. Z. Bot. 18, 625–681 (1926).Google Scholar
  15. Hotta, Y., and A. Bassel: Molecular size and circularity of DNA in cells of mammals and higher plants. Proc. nat. Acad. Sci. (Wash.) 53, 356–362 (1965).Google Scholar
  16. Hughes-Schrader, S., and P. Schrader: Polyteny as a factor in the chromosome evolution of the Pentatomini (Hemiptera). Chromosoma (Berl.) 8, 135–151 (1956).Google Scholar
  17. Joseph, C.K.: Cytotaxonomic studies on Anemone species (section Eriocephalus) with tuberous rootstocks. Ph. D. Thesis, University of Toronto 1964.Google Scholar
  18. Keyl, H.G.: Duplikationen von Untereinheiten der chromosomalen DNS während der Evolution von Chironomus thummi. Chromosoma (Berl.) 17, 139–180 (1965).Google Scholar
  19. Kurita, M.: Chromosome studies in Ranunculaceae I. Karyotypes of the subtribe Anemoninae. Rep. Biol. Inst. Ehime Univ. No 1, 1–10 (1957a); - Chromosome studies in Ranunculaceae II. Karyotypes of the subtribe Cimicifuginae. Rep. Biol. Inst. Ehime Univ. No 1, 11–17 (1957b); - Chromosome studies in Ranunculaceae VI. Karyotypes of six genera. Rep. Biol. Inst. Ehime Univ. No 3, 9–15 (1957c); - Chromosome studies in Ranunculaceae VII. Karyotypes of Eranthis and some other genera. Mem. Ehime Univ., Sect. II, 2, 325–334 (1957d);- Chromosome studies in Ranunculaceae XI. Karyotypes of seven genera. Mem. Ehime Univ., Sect. II, 3, 13–22 (1958); - Chromosome studies in Ranunculaceae XIV. Karyotypes of several genera. Mem. Ehime Univ., Sect. II, 3, 199–206 (1959); - Chromosome studies in Ranunculaceae XVIII. Karyotypes of several species. Mem. Ehime Univ., Sect. II, 4, 251–261 (1961a); Chromosome studies in Ranunculaceae XIX. Chromosome size in Ranunculus species in the eight-chromosome series. Mem. Ehime Univ., Sect. II, 4, 263–268 (1961b); - Chromosome studies in Ranunculaceae XXII. Karyotypes and chromosome-numbers of some species. Mem. Ehime Univ., Sect. II, 5, 31–36 (1964).Google Scholar
  20. Langlet, O.F.I.: Über Chromosomenverhältnisse und Systematik der Ranunculaceae. Svensk bot. Tidskr. 26, 381–400 (1932).Google Scholar
  21. Lewis, K.R., and B. John: Chromosome marker. Boston: Little, Brown and Co. 1963.Google Scholar
  22. Lewitzky, G.A.: The morphology of chromosomes. Bull. Appl. Bot., Genet. Plant Breeding (Leningrad) 27, 19–173 (1931).Google Scholar
  23. Matsuura, H., and T. Suto: Contribution to the idiogram study in phanerogamous plants. I. J. Fac. Sci. Hokkaido Imp. Univ., Ser. 5, 5, 33–75 (1935).Google Scholar
  24. McLeish, J.: Quantitative relationships between deoxyribonucleic and ribonucleic acid in isolated plant nuclei. Proc. roy. Soc. (Lond.) B 158, 261–278 (1963).Google Scholar
  25. Mello-Sampayo, T.: Differential polyteny and karyotype evolution in Luzula: a critical interpretation of morphological and cytophotometric data. Genet. iberica 13, 1–22 (1961).Google Scholar
  26. Mendelsohn, M. L.: The two-wavelength method of microspectrophotometry I. A microspectrophotometer and tests on model systems. J. biophys. biochem. Cytol. 4, 407–414 (1958a); - II. A set of tables to facilitate the calculations. J. biophys. biochem. Cytol. 4, 415–424 (1958b).Google Scholar
  27. Moses, M.J., and G. Yerganian: Desoxypentose nucleic acid (DNA) content and cytotaxonomy of several Cricetinae (hamsters). Genetics 37, 607 (1952).Google Scholar
  28. Ohno, S., W. Beçak, and M.L. Beçak: X-autosome ratio and the behavior pattern of individual X-chromosomes in placental mammals. Chromosoma (Berl.) 15, 14–30 (1964).Google Scholar
  29. Patau, K.: Absorption microphotometry of irregular-shaped objects. Chromosoma (Berl.) 5, 341–362 (1952).Google Scholar
  30. Schmidt, G., and S.G. Thannhauser: A method for the determination of desoxyribonucleic acid, ribonucleic acid and phosphoproteins in animal tissues. J. biol. Chem. 161, 83–89 (1945).Google Scholar
  31. Schrader, F., and S. Hughes-Schrader: Polyploidy and fragmentation in the chromosomal evolution of various species of Thyanta (Hemiptera). Chromosoma (Berl.) 7, 469–496 (1956); - Chromatid autonomy in Banasa (Hemiptera: Pentatomidae). Chromosoma (Berl.) 9, 193–215 (1958).Google Scholar
  32. Stebbins, G.L.: Chromosomal variation and evolution. Science 152, 1463–1469 (1966).Google Scholar
  33. Suyama, Y., and W.D. Bonner Jr.: DNA from plant mitochondria. Plant Physiol. 41, 383–388 (1966).Google Scholar
  34. Swift, H.H.: The desoxyribose nucleic acid content of animal nuclei. Physiol. Zool. 23, 169–198 (1950);- Nucleic acids and cell morphology in Dipteran salivary glands. In: The molecular control of cellular activity (John M. Allen, ed.). New York: McGraw Hill Book Co. 1962.Google Scholar
  35. —, and E. Rasch: Microphotometry with visible light. In: G. Oster and A.W. Pollister (eds.), Physical techniques in biological research, vol. III, p. 354–400. New York: Academic Press 1956.Google Scholar
  36. Taylor, J.H.: The replication and organization of DNA in chromosomes. In: Molecular genetics (J.H. Taylor, ed.), part 1, p. 65–111. New York: Academic Press 1963.Google Scholar
  37. Trosko, J.E., and S. Wolff: Strandedness of Vicia faba chromosomes as revealed by enzyme digestion studies. J. Cell Biol. 26, 125–135 (1965).Google Scholar
  38. Uhl, C.H.: Chromosome structure and crossing over. Genetics 51, 191–207 (1965).Google Scholar
  39. Ullerich, F.H.: Unterschiede im DNS-Gehalt der Genome von Bufo viridis. Z. Naturforschg. 20b, 720–722 (1965); - Karyotyp und DNS-Gehalt von Bufo bufo, B. viridis, B. bufo × B. viridis and B. calamita (Amphibia, Anura). Chromosoma (Berl.) 18, 316–342 (1966).Google Scholar

Copyright information

© Springer-Verlag 1966

Authors and Affiliations

  • Klaus Rothfels
    • 1
  • Elizabeth Sexsmith
    • 1
  • Margaret Heimburger
    • 1
  • Margarida O. Krause
    • 1
  1. 1.Department of BotanyUniversity of TorontoCanada

Personalised recommendations