Advertisement

Applied Physics A

, Volume 57, Issue 5, pp 449–455 | Cite as

The role of excited species in UV-laser materials ablation

Part II. The stability of the ablation front
  • B. Luk'yanchuk
  • N. Bityurin
  • S. Anisimov
  • D. Bäuerle
Surfaces And Multilayers

Abstract

The stability of a planar surface upon pulsed UV-laser irradiation is studied with special emphasis on polymer ablation. Here, we consider a two-level system in which the excitation energy is dissipated via stimulated emission, non-radiative transitions, and activated desorption of excited species. With thermal relaxation times tT≥10−10 s the ablation front turns out to become stable. This could explain the smooth surfaces obtained after pulsed UV-laser ablation of pure and stress free organic polymers. The situation is quite different for materials, for example metals, where fast thermal relaxation of the excitation energy within times, typically, tT<10−11 s, gives rise to instabilities which result in surface roughening.

PACS

82.65 82.50 42.10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Luk'yanchuk, N. Bityurin, S. Anisimov, D. Bäuerle: Appl. Phys. A 57, 367 (1993)Google Scholar
  2. 2.
    D. Bäuerle, B. Luk'yanchuk, P. Schwab, X.Z. Wang, E. Arenholz: In Laser Ablation of Electronic Materials — Basic Mechanisms and Applications, ed. by E. Fogarassy, S. Lazare, E-MRS, Vol. 4 (North-Holland Elsevier, Amsterdam 1992) p. 39Google Scholar
  3. 3.
    S.R. Cain, F.C. Burns, C.E. Otis, B. Braren: J. Appl. Phys. 72, 5172 (1992)Google Scholar
  4. 4.
    S.I. Anisimov, Y.A. Imas, G.S. Romanov, Y.V. Khodyko: Action of High-Power Radiation on Metals (Consult. Bureau, VA 1971)Google Scholar
  5. 5.
    S.I. Anisimov, M.I. Tribel'skii, Y.G. Epel'baum: Sov. Phys. JETP 51, 802 (1980)Google Scholar
  6. 6.
    S.I. Anisimov, M.I. Tribel'skii: Sov. Scientific Reviews: Sect. A, Physics Review, Vol. 8 (Harwood Academic, Chur 1987) p. 259Google Scholar
  7. 7.
    R. Srinivasan, B. Braren: Chem. Rev. 89, 1303 (1989)Google Scholar
  8. 8.
    D. Bäuerle: Appl. Phys. B 46, 261 (1988)Google Scholar
  9. 9.
    R. Srinivasan, V. Mayne-Banton: Appl. Phys. Lett. 41, 576 (1982)Google Scholar
  10. 10.
    G. Koren, J.T.C. Yeh: Appl. Phys. Lett. 44, 1112 (1984)Google Scholar
  11. 11.
    Y. Novis, J.J. Pireaux, A. Brezini, E. Petit, R. Caudano, P. Lutgen, G. Feyden, S. Lazare: J. Appl. Phys. 64, 365 (1988)Google Scholar
  12. 12.
    T. Bahners, E. Schollmeyer: J. Appl. Phys. 66, 1884 (1989)Google Scholar
  13. 13.
    H. Niino, A. Yabe, S. Nagano, T. Miki: Appl. Phys. Lett. 54, 2159 (1989)Google Scholar
  14. 14.
    H. Niino, M. Nakano, S. Nagano, A. Yabe: Appl. Phys. Lett. 55, 510 (1989)Google Scholar
  15. 15.
    H. Niino, M. Shimoyama, A. Yabe: Appl. Phys. Lett. 57, 2368 (1990)Google Scholar
  16. 16.
    P.E. Dyer, R.J. Farley: Appl. Phys. Lett. 57, 765 (1990)Google Scholar
  17. 17.
    E. Arenholz, V. Svorcik, T. Kefer, J. Heitz, D. Bäuerle: Appl. Phys. A 53, 330 (1991)Google Scholar
  18. 18.
    M. Bolle, S. Lazare, M. LeBlanc, A. Wilmes: Appl. Phys. Lett. 60, 674 (1992)Google Scholar
  19. 19.
    L.D. Landau, E.M. Lifshitz: Statistical Physics, Vol. 5, Part 1 (1980)Google Scholar
  20. 20.
    J.K. Frisoli, Y. Hefetz, T.F. Deutsch: Appl. Phys. B 52, 168 (1991)Google Scholar
  21. 21.
    M.B. Agranat, S.I. Anisimov, B.I. Makshantsev: Appl. Phys. B 55, 451 (1992)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • B. Luk'yanchuk
    • 1
  • N. Bityurin
    • 1
  • S. Anisimov
    • 1
  • D. Bäuerle
    • 1
  1. 1.Angewandte PhysikJohannes-Kepler-Universität LinzLinzAustria

Personalised recommendations