Advertisement

Applied Physics A

, Volume 57, Issue 6, pp 507–511 | Cite as

The formation of subsurface oxygen on Pt(100)

  • H. H. Rotermund
  • J. Lauterbach
  • G. Haas
Surface Physics 1993

Abstract

PhotoEmission Electron Microscopy (PEEM) enables imaging a surface via its work function. If a CO covered Pt(100) surface is exposed to oxygen patches are formed which appear dark in the PEEM image due to their high work function. As the surface is heated to temperatures above 650 K we observe the conversion of these dark islands into very bright ones with work functions much lower than even that of the clean surface. These findings are attributed to a change in the dipole moment of the adsorbed oxygen induced by their migration beneath the surface. A total work-function decrease of up to 1.2 eV has been evaluated independently using a Scanning Photoemission Microscope (SPM). The properties of this new kind of oxygen were also further investigated with thermal desorption spectroscopy and with Auger-electron spectroscopy.

PACS

68.35 82.65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.H. Rotermund, S. Jakubith, A. v. Oertzen, G. Ertl: J. Chem. Phys. 91, 4942 (1989)Google Scholar
  2. 2.
    H.H. Rotermund, W. Engel, M. Kordesch, G. Ertl: Nature 343, 355 (1990)Google Scholar
  3. 3.
    W. Engel, M.E. Kordesch, H.H. Rotermund, S. Kubala, A. v. Oertzen: Ultramicroscopy 36, 148 (1991)Google Scholar
  4. 4.
    R. Imbihl: In Optimal Structures in Heterogeneous Reaction Systems, ed. by P.J. Plath, Springer Ser. Synergetics, Vol. 44 (Springer, Berlin, Heidelberg 1989) p. 26Google Scholar
  5. 5.
    S. Ladas, R. Imbihl, G. Ertl: Surf. Sci. 219, 88 (1989)Google Scholar
  6. 6.
    J.E. Turner, B.C. Sales, M.B. Maple: Surf. Sci. 103, 54 (1980)Google Scholar
  7. 7.
    C.E. Smith, J.B. Biberian, G.A. Somorjai: J. Catal. 57, 426 (1979)Google Scholar
  8. 8.
    T. Matsushima, D.B. Almy, J.M. White: Surf. Sci. 67, 89 (1977)Google Scholar
  9. 9.
    P.R. Norton, R.L. Tapping, J.W. Goodale: J. Vac. Sci. Technol. A 14, 446 (1977)Google Scholar
  10. 10.
    B. Carriere, P. Legare, G. Maire: J. Chim. Phys. 71, 355 (1974)Google Scholar
  11. 11.
    W.H. Weinberg, D.R. Monroe, V. Lampton, R.P. Merrill: J. Vac. Sci. Technol. 14, 444 (1977)Google Scholar
  12. 12.
    H. Niehus, G. Comsa: Surf. Sci. 93, L147 (1980)Google Scholar
  13. 13.
    A.L. Vishnevskii, V.I. Savchenko: React. Kinet. Catal. Lett. 38, 167 (1989)Google Scholar
  14. 14.
    H.H. Rotermund, W. Engel, S. Jakubith, A. v. Oertzen, G. Ertl: Ultramicroscopy 36, 164 (1991)Google Scholar
  15. 15.
    J. Lauterbach, G. Haas, H.H. Rotermund, G. Ertl: Surf. Sci. 294, 116 (1993)Google Scholar
  16. 16.
    R.H. Fowler: Phys. Rev. 38, 45 (1991)Google Scholar
  17. 17.
    H.H. Rotermund: Surf. Sci. 283, 87 (1993)Google Scholar
  18. 18.
    A. v. Oertzen: Dissertation, Freie Universität, Berlin (1993)Google Scholar
  19. 19.
    P.R. Norton, K. Griffiths, P.E. Bindner: Surf. Sci. 138, 125 (1983)Google Scholar
  20. 20.
    W. Swiech, B. Rausenberger, W. Engel, A.M. Bradshaw, E. Zeitler: Surf. Sci. (1993), to be publishedGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • H. H. Rotermund
    • 1
  • J. Lauterbach
    • 1
  • G. Haas
    • 1
  1. 1.Fritz-Haber-Institut der Max-Planck-GesellschaftBerlinGermany

Personalised recommendations