Molecular and General Genetics MGG

, Volume 218, Issue 2, pp 302–307 | Cite as

Termination of transcription of ribosomal RNA genes of mung bean occurs within a 175 bp repetitive element of the spacer region

  • Katrin Schiebel
  • Georg von Waldburg
  • Jutta Gerstner
  • Vera Hemleben


In mung bean (Vigna radiata, formerly Phaseolus aureus) one length heterogeneity in the intergenic spacer (IGS) of the ribosomal DNA (rDNA) is due to a variable number of 175-bp subrepeats. This spacer region downstream of the 25S rRNA coding region was characterized by seuquencing the 2.4 kb EcoRI/HindIII fragment of a 10.5 kb mung bean rDNA repeat. Within the 175-bp repetitive elements a sequence was detected showing strong similarity to the T2/T3-box (GACTTGC) found in Xenopus rDNA and involved in termination and enhancing transcription. In mung bean this sequence partly forms the stem of a possible stem-loop structure at the 3′ end of each subrepeat. Nuclease mapping of transcription termination sites (TTS) results in two signals, 65 bp and 315 bp downstream of the 3′ end of the 25S rRNA coding region. The longer transcript terminates 20 bp downstream of the stem-loop structure at the end of the first 175-bp subrepeat. A spacer model is proposed which allows “readthrough enhancement”. No cross-hybridization was observed between the 180-bp subrepeats in pea (Pisum sativum) rDNA and the mung bean 175-bp subrepeat.

Key words

Ribosomal DNA Vigna radiata Termination of transcription Subrepeats Secondary structures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appels R, Moran LB, Gustafson JP (1986) The structure of DNA from the rye (Secale cereale) NOR R1 locus and its behaviour in wheat backgrounds. Can J Genet Cytol 28:673–685Google Scholar
  2. Bonven BJ, Gocke E, Westergaard O (1987) A high affinity topoisomerase I binding sequence is clustered at DNase I hypersensitive sites in Tetrahymena r chromatin. Cell 41:541–555Google Scholar
  3. Courvey AJ, Wang JC (1988) Influence of DNA sequence and supercoiling on the process of cruciform formation. J Mol Biol 202:35–43Google Scholar
  4. Delcasso-Tremousaygue D, Grellet F, Panabieres F, Ananiev ED, Delseny M (1988) Structural and transcriptional characterization of the external spacer of a ribosomal RNA nuclear gene from a higher plant. Eur J Biochem 172:767–776Google Scholar
  5. Deltour R, Mosen H (1987) Proposals for the macromolecular organization of the higher plant nucleolonema. Biol Cell 60:75–86Google Scholar
  6. Furlong JC, Forbes J, Robertson M, Maden BEH (1983) The external transcribed spacer and precoding region of Xenopus borealis rDNA: comparison with the corresponding region of Xenopus laevis rDNA. Nucleic Acids Res 11:8183–8196Google Scholar
  7. Futcher B (1988) Supercoiling and transcription, or vice versa? Trends Genet 4:271–272Google Scholar
  8. Ganal M, Torres R, Hemleben V (1988) Complex structure of the ribosomal DNA spacer of Cucumis sativus (cucumber). Mol Gen Genet 212:548–554Google Scholar
  9. Gerbi S (1986) Evolution of ribosomal DNA. In: MacIntyre R (ed) Molecular evolutionary genetics. Plenum, New York, p 419Google Scholar
  10. Gerstner J, Schiebel K, von Waldburg G, Hemleben V (1988) Complex organization of the length heterogenous 5′ external spacer of mung bean ribosomal DNA. Genome 30:723–733Google Scholar
  11. Grummt I, Maier U, Öhrlein A, Hassouna N, Bachellerie J (1985) Transcription of a mouse rDNA terminates downstream of the 3′ end of the 28S RNA and involves interaction of factors with repeated sequences in the 3′spacer. Cell 43:801–810Google Scholar
  12. Grummt I, Rosenbauer H, Niedermeyer H, Maier U, Öhrlein A (1986a) A repeated 18 bp sequence motif in the mouse rDNA spacer mediates binding of a nuclear factor and transcription termination. Cell 45:837–846Google Scholar
  13. Grummt I, Kuhn A, Bartsch I, Rosenbauer H (1986b) A transcription terminator located upstream of the mouse rDNA initation site affects rRNA synthesis. Cell 47:901–911Google Scholar
  14. Hemleben V, Ganal M, Gerstner J, Schiebel K, Torres RA (1988) Organization and length heterogeneity of plant ribosomal RNA genes. In: Kahl G (ed) Architecture of eukaryotic genes. VCH, Weinheim, p 371Google Scholar
  15. Henderson S, Sollner-Webb B (1986) A transcriptional terminator is a novel element of the promotor of the mouse ribosomal RNA gene. Cell 47:891–900Google Scholar
  16. Jordan G (1987) At the heart of the nucleolus. Nature 329:489–490Google Scholar
  17. Jorgensen RA, Cuellar RE, Thompson WF, Kavanagh TA (1987) Structure and variation in ribosomal RNA genes of pea. Plant Mol Biol 8:3–12Google Scholar
  18. Kato A, Yakura K, Tanifuji S (1985) Repeated DNA sequences found in the large spacer of Vicia faba rDNA. Biochim Biophys Acta 825:411–415Google Scholar
  19. Kempers-Veenstra AE, Oliemans J, Offenberg H, Dekker AF, Piper PW, Planta RJ, Klootwijk J (1986) 3′-end formation of transcripts from the yeast rRNA operon. EMBO J 5:2703–2710Google Scholar
  20. Labhart P, Reeder RH (1986) Characterization of three sites of RNA 3′end formation in the Xenopus ribosomal gene spacer. Cell 45:431–443Google Scholar
  21. Lassner M, Dvorak J (1986) Preferential homogenization between adjacent and alternate subrepeats in wheat rDNA. Nucleic Acids Res 14:5499–5512Google Scholar
  22. Lassner M, Anderson O, Dvorak J (1987) Hypervariation associated with a 12-nucleotide direct repeat and inferences on intergenomic homogenization of ribosomal RNA gene spacers based on the DNA sequence of a clone from the wheat Nor-D3 locus. Genome 29:770–781Google Scholar
  23. Long E, Dawid I (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727–764Google Scholar
  24. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory. Cold Spring Harbor, NYGoogle Scholar
  25. Martini G, Flavell RB (1985) The control of nucleolus volume in wheat, a genetic study of three developmental stages. Heredity 54:111–149Google Scholar
  26. Martini G, O'Dell M, Flavell RB (1982) Partial inactivation of wheat nucleolus organisers by the nucleolus organiser chromosomes from Aegilops umbellulata. Chromosoma 84:687–700Google Scholar
  27. Mitchelson K, Moss T (1987) The enhancement of ribosomal transcription by the recycling of RNA polymerase I. Nucleic Acids Res 15:9577–9596Google Scholar
  28. Moss T (1983) A transcriptional function for the repetitive ribosomal spacer in Xenopus laevis. Nature 302:223–228Google Scholar
  29. Muller M, Pfund W, Metha V, Trask D (1985) Eucaryotic type I topoisomerase is enriched in the nucleolus and catalytically active on ribosomal DNA. EMBO J 4:1237–1243Google Scholar
  30. Murtif VL, Rae PMM (1985) In vivo transcription of rDNA spacers in Drosophila. Nucleic Acids Res 13:3221–3240Google Scholar
  31. Ness PJ, Koller T, Thoma F (1988) Topoisomerase I cleavage sites identified and mapped in the chromatin of Dictyostelium ribosomal RNA genes. J Mol Biol 200:127–130Google Scholar
  32. Polans NO, Weeden NF, Thompson WF (1986) Distribution, inheritance and linkage relationships of ribosomal DNA spacer length variants in pea. Theor Appl Genet 72:289–295Google Scholar
  33. Rogers SO, Bendich AJ (1987) Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Mol Biol 9:509–520Google Scholar
  34. Rogers SO, Bendich AJ (1988) Recombination in Escherichia coli between cloned ribosomal RNA intergenic spacers from Vicia faba: A model for the generation of ribosomal RNA gene heterogeneity in plants. Plant Sci 55:27–31Google Scholar
  35. Rogers SO, Honda S, Bendich AJ (1986) Variation in the ribosomal RNA genes among individuals of Vicia faba. Plant Mol Biol 6:339–345Google Scholar
  36. Smith HC, Rothblum LI (1987) Ribosomal DNA sequences attached to the nuclear matrix. Biochem Genet 25:863–879Google Scholar
  37. Taira T, Kato A, Tanifuji S (1988) Difference between two major size classes of carrot rDNA repeating units is due to reiteration of sequences of about 460 bp in the large spacer. Mol Gen Genet 213:170–174Google Scholar
  38. Takaiwa F, Oono K, Iida Y, Sugiura M (1985) The complete sequence of rice 25S rRNA gene. Gene 37:225–259Google Scholar
  39. Tautz D, Dover GA (1986) Transcription of the tandem array of ribosomal DNA in Drosophila melanogaster does not terminate at any fixed point. EMBO J 5:1267–1273Google Scholar
  40. Toloczyki C, Feix G (1986) Occurrence of 9 homologous repeat units in the external spacer region of a nuclear maize rRNA gene unit. Nucleic Acids Res 14:4969–4985Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Katrin Schiebel
    • 1
  • Georg von Waldburg
    • 1
  • Jutta Gerstner
    • 1
  • Vera Hemleben
    • 1
  1. 1.Universität TübingenInsttut für Biologie, Lehrstuhl für Allgemeine GenetikTübingenFederal Republic of Germany

Personalised recommendations