Advertisement

Molecular and General Genetics MGG

, Volume 187, Issue 2, pp 195–201 | Cite as

A general method to identify plant structural genes among genomic DNA clones using transposable element induced mutations

  • U. Wienand
  • H. Sommer
  • Zs. Schwarz
  • N. Shepherd
  • H. Saedler
  • F. Kreuzaler
  • H. Ragg
  • E. Fautz
  • K. Hahlbrock
  • B. Harrison
  • P. A. Peterson
Article

Summary

Several genomic clones from Petroselinum hortense, Zea mays and Antirrhinum majus all homologous to cloned Petroselinum chalcone synthase cDNA were isolated using the λgt WES cloning system.

Clones containing the chalcone synthase structural gene were identified by hybridization to cDNA from Petroselinum hortense, genomic wildtype, mutant and revertant DNA.

Among the 5 different clones from Petroselinum hortense, PH3 is the most likely candidate to contain at least a portion of the chalcone synthase gene.

None of the 4 Zea mays clones appeared to contain part of the chalcone synthase gene.

Among the 2 different clones from Antirrhinum majus, AM3 contains the portion of the chalcone synthase structural gene which is altered in the mutant nivea recurrens (nivrec). This mutant is considered to be due to the integration of a transposable element. In revertants of nivrec to niv+ the wildtype locus is restored molecularly.

Keywords

Structural Gene Transposable Element Chalcone Genomic Clone Induce Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dooner HK, Nelson OE (1977) Genetic control of UDP glucose: flavanol 3-O-glucosyltransferase in endosperm of maize. Biochem Genetics 15:509Google Scholar
  2. Dooner HK (1980) Genetic regulation of anthocyanin biosynthetic enzymes in maize. Genetics 94:29Google Scholar
  3. Fincham JRS, Sastry GRK (1974) Controlling Elements in Maize. Ann Rev Genetics 8:15Google Scholar
  4. Hanson KR, Havir EA (1981) Phenylalanin ammonia lyase. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, Vol 7. Academic Press New York, p 577Google Scholar
  5. Harrison BJ, Carpenter RA (1973) A comparison on the instabilities at the nivea and pallida loci in Antirrhinum majus. Heredity 31:309Google Scholar
  6. Heller W, Hahlbrock K (1980) Highly purified “flavanone synthase” from parsley catalyses the formation of naringenin chalcone. Arch Biochem Biophs 200:617Google Scholar
  7. Hohn B (1979) In vitro packaging of λ and cosmid DNA. In: Colowick SP, Kaplan NO (eds). Methods in enzymology 68:299Google Scholar
  8. Kuckuck H (1936) Über vier neue Serien multipler Allele bei Antirrhinum majus. Z F indukt Abst- u Vererbungsl 71:429Google Scholar
  9. Leder P, Tiemeier D, Enquist L (1977) EK2 derivatives of bacteriophage lambda useful in the cloning of DNA from higher organism: the λgt WES cloning system. Science 196:175Google Scholar
  10. McClintock B (1956) Controlling Elements and the Gene, Cold Spring Harbor Symp Quant Biol 21:197Google Scholar
  11. McClintock B (1967) Regulation of pattern of gene expression by controlling elements in maize. Carnegie Inst Washington Yearb 65:568Google Scholar
  12. McCormick SH (1968) Pigment synthesis in maize aleurone from precursor fed to anthocyanin mutants. Biochem Genetics 16:777Google Scholar
  13. Paterson BM, Roberts BE, Kuff EL (1977) Structural gene identification and mapping by DNA mRNA hybrid-arrested cell-free translation. Proc Natl Acad Sci USA 74:4370Google Scholar
  14. Peterson PA (1970) The En mutable system in maize. III. Transposition associated with mutational events. Theor Appl Genet 40:367Google Scholar
  15. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503Google Scholar
  16. Stickland RG, Harrison BJ (1974) Precursors and genetic control of pigmentation, I. Induced biosynthesis of pelagonidin, cyanidin and delphinidin in Antirrhinum majus. Heredity 33:108Google Scholar
  17. Stubbe H Genetik und Zytologie von Antirrhinum L. sect, Antirrhinum. VEB Gustav Fischer Verlag, Jena 1966, p 97Google Scholar
  18. Wienand U, Langridge P, Feix G (1981) Isolation and characterization of a genomic sequence of maize coding for a zein gene. Mol Gen Genet 182:440Google Scholar
  19. Woolford JL, Rosbash M (1979) The use of R-looping for structural gene identification and mRNA purification. Nucl Acids Res 6:2483Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • U. Wienand
    • 1
  • H. Sommer
    • 1
  • Zs. Schwarz
    • 1
  • N. Shepherd
    • 1
  • H. Saedler
    • 1
  • F. Kreuzaler
    • 2
  • H. Ragg
    • 2
  • E. Fautz
    • 2
  • K. Hahlbrock
    • 2
  • B. Harrison
    • 3
  • P. A. Peterson
    • 4
  1. 1.Max-Planck-Institut für ZüchtungsforschungKöln 30Federal Republic of Germany
  2. 2.Biologie IIUniversität FreiburgFreiburgFederal Republic of Germany
  3. 3.John Innes InstituteNorwichGreat Britain
  4. 4.Department of AgronomyIowa State UniversityAmesUSA

Personalised recommendations