, Volume 96, Issue 2, pp 112–118 | Cite as

Chromosome 9 of Ellobius lutescens is the X chromosome

  • Walther Vogel
  • Peter Steinbach
  • Mahmoud Djalali
  • Karl Mehnert
  • Sher Ali
  • Jörg Thomas Epplen


Ellobius lutescens carries an apparently identical karyotype (2n = 17) in both sexes. On the basis of indirect evidence the unpaired chromosome 9 has been considered to represent the X chromosome of this species. We have obtained data to substantiate this view by four different techniques. After fusion of HPRT RAG cells with E. lutescens fibroblasts we demonstrated that the enzymes HPRT and G6PD are localized on the presumptive X chromosome. By analysis of pachytene figures after silver staining we showed by electron microscopy that the single chromosome exhibits the typical features of an X chromosome in male meiosis. Hybridization of (GATA)4 and (GACA)4 oligonucleotide probes to E. lutescens DNA revealed several distinct bands in the high molecular weight range some of which appeared to be specific for the individual but not for the sex of the animal. Hybridization in situ of the (GATA)4 probe on metaphase spreads of E. lutescens did not highlight any particular chromosome segment but showed a significant deficit of these sequences in chromosome 9. These observations are discussed with respect to their bearing on X chromosome determination. Finally it is concluded that E. lutescens should be an ideal tool for testing candidate genes assumed to be involved in primary sex determination.


Oligonucleotide Probe Chromosome Segment Distinct Band Ideal Tool Single Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnemann J, Jakubiczka S, Schmitke J, Schäfer R, Epplen JT (1986) Clustered GATA repeats (Bkm sequences) on the human Y-chromosome. Hum Genet 73:301–303Google Scholar
  2. Castro-Sierra E, Wolf U (1967) Replication patterns of the unpaired Chromosome 9 of the rodent Ellobius lutescens TH. Cytogenetics 6:268–275Google Scholar
  3. Castro-Sierra E, Wolf U (1968) Studies on the male meiosis of Ellobius lutescens Th. Cytogenetics 7:241–248Google Scholar
  4. De la Maza LM, Sawyer IR (1976) The G and Q banding pattern of Ellobius lutescens. A unique case of sex determination in mammals. Can J Genet Cytol 18:497–502Google Scholar
  5. Djalali M, Hameister H, Vogel W (1986) Further chromosomal studies in Ellobius lutescens: Heteromorphism of chromosome 1 is not associated with sex determination. Experientia 42:1281–1282Google Scholar
  6. Dresser ME, Moses MJ (1980) Synaptonemal complex karyotyping in spermatocytes of the Chinese hamster (Cricetulus griseus). Chromosoma 76:1–22Google Scholar
  7. Epplen JT, McLaren A (1987) GACA/GATA simple repeated DNA as a means to dissect the sex-reversed (Sxr) mutation of the mouse. In: Wachtel SS (ed) Evolutionary mechanisms in sex determination. CRC Press, Boca Raton, FloridaGoogle Scholar
  8. Epplen JT, Ohno S (1987) On DNA, RNA and sex determination. In: Lau YFC (ed) Selected topics in molecular endocrinology. Oxford University Press, New YorkGoogle Scholar
  9. Epplen JT, Studer R (1987) On interspersed repetitive DNA sequences in animals. In: Sharma T (ed) Advances in chromosome research, in pressGoogle Scholar
  10. Epplen JT, Cellini A, Romero S, Ohno S (1983) An attempt to approach the molecular mechanisms of primary sex determination: W- and Y-chromosomal conserved simple repetitive DNA sequences and their differential expression in mRNA. J Exp Zool 228:305–312Google Scholar
  11. Howell WM, Black DA (1980) Controlled silver-staining of nucleolus organizer regions with a protective collodial developer: a 1-step method. Experientia 36:1014–1015Google Scholar
  12. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  13. Matthey R (1953) La formule chromosomique et le probleme de la determination sexuelle chez Ellobius lutescens (RodentiaMuridae-Microtinae). Arch Julius Klaus-Stift Vererbungsforsch 28:271–280Google Scholar
  14. Matthey R (1958) Un nouveau type de determination chromosomique du sex chez les mammiferes Ellobius lutescens. Th et Microtus (Chilotus) Bachm (Murides-Microtines). Experientia 14:240–241Google Scholar
  15. Matthey R (1964) Etudes sur les chromosomes d'Ellobius lutescens (Mammalia-Muridae-Microtinae). II. Informations complementaires sur les divisions meiotiques. Rev Suisse Zool 71:401–410Google Scholar
  16. Miyada CG, Reyes AA, Studencki AB, Wallace RB (1985) Methods of oligonucleotide hybridization. Proc Natl Acad Sci USA 82:2890–2894Google Scholar
  17. Moses M (1977) Synaptonemal complex karyotyping in spermatocytes of the Chinese hamster. Chromosoma 60:99–125Google Scholar
  18. Nanda J, Neitzel H, Sperling K, Studer R, Epplen JT (1988) Simple repetitive GATA/GACA sequences characterize the X-chromosomal heterochromatin of Microtus agrestis, european field role (rodentia cricetidea). Chromosoma, in pressGoogle Scholar
  19. Nesbitt MN, Francke U (1973) A system of nomenclature for band patterns of mouse chromosomes. Chromosoma 41:145–158Google Scholar
  20. Ohno S (1963) The creeping vole (Microtus oregoni) as a gonosomic mosaic. I. The OY/XY constitution of the male. Cytogenetics 2:232–235Google Scholar
  21. Ohno S, Jainchill J, Stenius C (1964) X-autosome ratio and the behaviour pattern of individual X-chromosomes in placental mammals. Chromosoma 15:14–30Google Scholar
  22. Pathak S, Hsu TC (1979) Silver stained structures in mammalian meiotic prophase. Chromosoma 70:195–203Google Scholar
  23. Pontecorvo G (1976) Production of indefinitely multiplying mammalian somatic cell hybrids by polyethylene glycol (PEG) treatment. Somatic Cell Genet 1:397–400Google Scholar
  24. Schäfer R, Ali S, Epplen JT (1986) The organization of the evolutionarily conserved GATA/GACA repeats in the mouse genome. Chromosoma 93:502–510Google Scholar
  25. Schmid W (1967) Heterochromatin in mammals. Arch Julius Klaus-Stift Vererbungsforsch 42:1Google Scholar
  26. Singh L, Jones KW (1982) Sex reversal in the mouse (Mus musculus) is caused by a recurrent nonreciprocal crossover involving the X and an aberrant Y chromosome. Cell 28:111–120Google Scholar
  27. Singh L, Purdom JF, Jones KW (1981) Conserved sex-chromosome associated nucleotide sequences in eukaryotes. Cold Spring Harbor Sym Quant Biol 45:805–813Google Scholar
  28. Speed RM (1986) Oocyte development in XO foetuses of man and mouse: the possible role of heterologous X-chromosome pairing in germ cell survival. Chromosoma 94:115–124Google Scholar
  29. Szybalski W, Szybalski EH, Ragni C (1962) Genetic studies with human cell lines. Natl Cancer Inst Monogr 7:75–89Google Scholar
  30. Tsao SGS, Brunk CF, Pearlman RE (1983) Hybridization of nucleic acids directly in agarose gels. Anal Biochem 131:365–372Google Scholar
  31. Wolf M, Schempp W, Vogel W (1979) Ellobius lutescens Th (Rodentia, Microtinae): Q-, R-, and replication banding patterns. Chromosome 1 polymorphism in the male and presumptive heterogamety in the female. Cytogenet Cell Genet 23:117–123Google Scholar
  32. Wolf U (1974) Cell cultures from tissue explants. In: Schwarzacher HG, Wolf U (eds) Methods in human cytogenetics. Springer, Berlin Heidelberg New YorkGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Walther Vogel
    • 1
  • Peter Steinbach
    • 1
  • Mahmoud Djalali
    • 1
  • Karl Mehnert
    • 1
  • Sher Ali
    • 2
  • Jörg Thomas Epplen
    • 2
  1. 1.Abteilung Klinische Genetik der Universität UlmUlmGermany
  2. 2.Junior Cancer Research UnitMax-Planck-Institut für ImmunobiologieFreiburgGermany

Personalised recommendations