Advertisement

Structure of the pineal organ of the sardine, Sardina pilchardus sardina (Risso), and some further remarks on the pineal organ of Mugil spp.

  • Claes Rüdeberg
Article

Summary

The pineal organ of the sardine, Sardina pilchardus sardina, was investigated light and electron microscopically. The pineal parenchyma contains sensory cells, supporting cells, and ganglion cells, and the overlying tissues appear specialized for light penetration. The ganglion cells are arranged in 3 groups, their axons giving rise to the tractus epiphyseos. The sensory cell is of a photoreceptor type found in several other teleost species. No definitive evidence of a secretion was educed but some indications of an endocrine function are reported and discussed.

The pineal receptor cell of neonates of Mugil spp. which have a pigment-free spot above the pineal organ, was investigated electron microscopically and found to have the same organization as that of adult Mugil auratus.

Keywords

Ganglion Cell Receptor Cell Overlie Tissue Endocrine Function Sensory Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axelrod, J., R. J. Wurtman, and C. M. Winget: Melatonin synthesis in the hen pineal gland and its control by light. Nature (Lond.) 201, 1134 (1964).Google Scholar
  2. Bairati, A. Jr., and N. Orzalesi: The ultrastructure of the pigment epithelium and of the photoreceptor-pigment epithelium junction in the human retina. J. Ultrastruct. Res. 9, 484–496 (1963).Google Scholar
  3. Barets, A., and T. Szabo: Appareil synaptic des cellules sensorielles de l'ampoule de Lorenzini chez la torpille, Torpedo marmorata. J. Microscopie 1, 47–54 (1962).Google Scholar
  4. Bertolini, B., and F. Mangia: Osservazioni sulla ultrastruttura dell'occhio pineale della lampreda. Rend. Acc. Naz. Lincei 41, 147–153 (1966).Google Scholar
  5. Björkman, N., and B. Hellström: Lead-ammonium acetate: a staining method for electron microscopy free of contamination. Stain Technol. 40, 169–171 (1965).Google Scholar
  6. Breder, C. M., and P. Rasquin: A preliminary report on the role of the pineal organ in the control of pigment cells and light reactions in recent teleosts. Science 111, 10–12 (1950).Google Scholar
  7. Breucker, H., and E. Horstmann: Elektronenmikroskopische Untersuchungen am Pinealorgan der Regenbogenforelle (Salmo irideus). Progr. Brain Res. 10, 259–269 (1965).Google Scholar
  8. Carasso, N.: Etude au microscope électronique des synapses des cellules visuelles chez le têtard d'Alytes obstetricans. C. R. Acad. Sci. (Paris) 245, 216–219 (1957).Google Scholar
  9. Charlton, H. M.: Uptake of labelled precursors of melatonin by the epiphysis of Xenopus laevis. Nature (Lond.) 204, 1093 (1964).Google Scholar
  10. Dodt, E.: Photosensitivity of the pineal organ in the teleost Salmo irideus (Gibbons). Experientia (Basel) 19, 642 (1963).Google Scholar
  11. Eakin, R. M., W. B. Quay, and J. A. Westfall: Cytological and cytochemical studies on the frontal and pineal organs of the treefrog, Hyla regilla. Z. Zellforsch. 59, 663–683 (1963).Google Scholar
  12. Evans, E. M.: On the ultrastructure of the synaptic region of visual photoreceptors in certain vertebrates. Z. Zellforsch. 71, 499–516 (1966).Google Scholar
  13. Falck, B., and Ch. Owman: A detailed methodological description of the fluorescence method for the demonstration of biogenic monoamines. Acta Univ. Lund., Sec. II, 7, 1–19 (1965).Google Scholar
  14. Frisch, K. V.: Beiträge zur Physiologie der Pigmentzellen in der Fischhaut. Pflügers Arch. ges. Physiol. 138, 319–389 (1911a).Google Scholar
  15. —: Das Parietalorgan der Fische als funktionierendes Organ. S.-B. Ges. Morph. Physiol. (München) 27, 16–18 (1911b).Google Scholar
  16. Galey, F. R., and S. E. G. Nilsson: A new method for transferring sections from the liquid surface of the trough through staining solutions to the supporting film of a grid. J. Ultrastruct. Res. 14, 405–410 (1966).Google Scholar
  17. Grunewald-Lowenstein, M.: Influence of light and darkness on the pineal body in Astyanax mexicanus (Filippi). Zoologica, N. Y. 41, 119–128 (1956).Google Scholar
  18. Hafeez, M.A., and P. Ford: Histology and histochemistry of the pineal organ in the sockeye salmon, Oncorhynchus nerka, Walbaum. Canad. J. Zool. 45, 117–126 (1967).Google Scholar
  19. Holmgren, N.: Über die Epiphysennerven von Clupea sprattus und harengus. Ark. Zool. 11, 25, 1–5 (1918).Google Scholar
  20. —: Zur Anatomie und Histologie des Vorder-und Zwischenhirns der Knochenfische. Acta zool. (Stockh.) 11, 137–315 (1920).Google Scholar
  21. Holmgren, U.: Secretory material in the pineal body as shown by aldehyde-fuchsin following performic acid oxidation. Stain Technol. 33, 148–149 (1958).Google Scholar
  22. —: On the the structure of the pineal area of teleost fishes. Göteborgs Kgl. Vetenskaps Vitterhets-Samhäll. Handl., Ser. B 8, 3, 5–66 (1959).Google Scholar
  23. Karnovsky, J. M.: Simple methods for staining with lead at high pH in electron microscopy. J. biophys. biochem. Cytol. 11, 729–732 (1961).Google Scholar
  24. Kelly, D. E., and S. W. Smith: Fine structure of the pineal organs of the adult frog, Rana pipiens. J. Cell Biol. 22, 653–674 (1964).Google Scholar
  25. Kurtz, S. M.: A new method for embedding tissues in Vestopal W. J. Ultrastruct. Res. 5, 468–469 (1961).Google Scholar
  26. Millonig, G.: Advantages of a phosphate buffer for OsO4 solutions in fixation. J. appl. Phys. 32, 1637 (1961a).Google Scholar
  27. —: A modified procedure for lead staining of thin sections. J. biophys. biochem. Cytol. 11, 736–739 (1961b).Google Scholar
  28. Morita, Y.: Entladungsmuster pinealer Neurone der Regenbogenforelle (Salmo irideus) bei Belichtung des Zwischenhirns. Pflügers Arch. ges. Physiol. 289, 155–167 (1966).Google Scholar
  29. Motte, I. De la: Untersuchungen zur vergleichenden Physiologie der Lichtempfindlichkeit geblendeter Fische. Z. vergl. Physiol. 49, 58–90 (1964).Google Scholar
  30. Oksche, A.: Über die Art und Bedeutung sekretorischer Zelltätigkeit in der Zirbel und im Subkommissuralorgan. Verh. anat. Ges. (Jena) 52, 88–96 (1954).Google Scholar
  31. —, and H. Kirschstein: Elektronenmikroskopische Feinstruktur der Sinneszellen im Pinealorgan von Phoxinus laevis L. Naturwissenschaften 53, 591 (1966).Google Scholar
  32. —: Die Ultrastruktur der Sinneszellen im Pinealorgan von Phoxinus laevis, Z. Zellforsch. 78, 151–166 (1967).Google Scholar
  33. —, and M. Vaupel-von Harnack: Vergleichende elektronenmikroskopische Studien am Pinealorgan. Progr. Brain Res. 10, 238–258 (1965).Google Scholar
  34. Owman, Ch., and C. Rüdeberg: Unpublished results.Google Scholar
  35. Palade, G.: A study of fixation for electron microscopy. J. exp. Med. 95, 285–298 (1952).Google Scholar
  36. Pflugfelder, O.: Wirkungen der Epiphysectomie auf die Postembryonalentwicklung von Lebistes reticulatus, Peters. Wilhelm Roux' Arch. Entwickl.-Mech. Org. 146, 115–136 (1953).Google Scholar
  37. —: Wirkungen partieller Zerstörungen der Parietalregion von Lebistes reticulatus, Peters. Wilhelm Roux' Arch. Entwickl.-Mech. Org. 147, 42–60 (1954).Google Scholar
  38. —: Wirkungen lokaler Hirnläsionen auf Hypophyse und Thyreoidea von Carassius gibelio anratus, Bloch. Wilhelm Roux' Arch. Entwickl.-Mech. Org. 155, 535–548 (1964).Google Scholar
  39. Rasquin, P.: Studies in the control of pigment cells and light reactions in recent teleost fishes. I. Morphology of the pineal region. Bull. Amer. Mus. Nat. Hist. 115, 1–68 (1958).Google Scholar
  40. Robertis, E. De: The morphogenesis of retinal rods. An electron microscopic study. J. biophys. biochem. Cytol. 2, Suppl. 2, 209–218 (1956).Google Scholar
  41. Rüdeberg, C.: Electron microscopical observations on the pineal organ of the teleosts Mugil auratus (Risso) und Uranoscopus scaber (Linné). Pubbl. Staz. zool. Napoli 35, 47–60 (1966).Google Scholar
  42. —: A rapid method for staining thin sections of vestopal W-embedded tissue for light microscopy. Experientia (Basel) 23, 792 (1967).Google Scholar
  43. Schäfer, O.: Spektrale Empfindlichkeit und absolute Schwelle des Farbwechsels geblendeter Elritzen (Phoxinus laevis L.). Biol. Zbl. 83, 47–66 (1964).Google Scholar
  44. Scharrer, E.: Die Lichtempfindliohkeit blinder Elritzen (Untersuchungen über das Zwischenhirn der Fische). Z. vergl. Physiol. 7, l-38 (1928).Google Scholar
  45. Sjöstrand, F. S.: Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by three dimensional reconstructions from serial sections. J. Ultrastruct. Res. 2, 122–170 (1958).Google Scholar
  46. Smith, C. A., and F. S. Sjöstrand: A synaptic structure in the hair cells of the guinea pig cochlea. J. Ultrastruct. Res. 5, 184–192 (1961).Google Scholar
  47. Steyn, W.: Electron microscopic observations on the epiphysial sensory cells in lizards and the pineal sensory cell problem. Z. Zellforsch. 51, 735–747 (1960).Google Scholar
  48. Venable, J. H., and R. Coggeshall: A simplified lead citrate stain for use in electron microscopy. J. Cell Biol. 25, 407–408 (1965).Google Scholar
  49. Wolfe, D. E.: The epiphysial cell: an electron microscopic study of its intercellular relationships and intracellular morphology in the pineal body of the albino rat. Progr. Brain Res. 10, 332–388 (1965).Google Scholar
  50. Wurtman, R. J., and J. Axelrod: The formation, metabolism and physiologic effects of melatonin in mammals. Progr. Brain Res. 10, 520–529 (1965).Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • Claes Rüdeberg
    • 1
    • 2
  1. 1.Istituto di Anatomia Comparata „Battista Grassi“ dell'Università di RomaItalia
  2. 2.Zoological InstituteLundSweden

Personalised recommendations