Molecular and General Genetics MGG

, Volume 190, Issue 2, pp 204–214 | Cite as

Further extension of the opine concept: Plasmids in Agrobacterium rhizogenes cooperate for opine degradation

  • Annik Petit
  • Chantal David
  • Gary A. Dahl
  • Jeffrey G. Ellis
  • Pierre Guyon
  • Francine Casse-Delbart
  • Jacques Tempé
Article

Summary

Primary hairy root tissues as well as aseptic hairy root culture lines contain specific compounds that have been biologically characterized as opines. These substances are agropine, mannopine, mannopinic acid, and agropinic acid; they have been synthesized and their electrophoretic behavior has been studied. Hairy root tissues also contain agrocinopines. According to the opine content of hairy root tissues, two types of Agrobacterium rhizogenes strains have been identified. Agropine-type strains (A4, 15834, HRI) elicit roots containing agropine, mannopine, mannopinic acid, and agropinic acid, whereas mannopine-type strains (8196, TR7, TR101) elicit roots containing only mannopine, mannopinic acid and agropinic acid. A. rhizogenes strains catabolize the opines whose synthesis they induce in the hairy root tissues. However, strain HRI only catabolizes agropine. Except for strain HRI, all A. rhizogenes strains studied contain three plasmids, of which the largest appears to be a cointegrate of the two others. Transconjugants of A. rhizogenes plasmids in A. tumefaciens have been obtained by selection on opines. Their properties have been studied and related to their plasmid content. In the mannopine strain C58C1(pRi8196), the virulence functions and the opine-related functions are located on the same plasmid (pRi8196). In agropine strains the catabolic functions are dissociated: agropine degradation is specified by the virulence plasmid, which also specifies opine synthesis in hairy root tissue, however, mannopine, mannopinic acid and agropinic acid degradation are specified by the smaller plasmid. Strain HRI contains only the virulence plasmid, which explains its inability to degrade mannopine, mannopinic acid, and agropinic acid.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biemann K, Lioret C, Asselineau J, Lederer E, Polonski J (1960) Sur la structure chimique de la lysopine, nouvel acide aminé isolé des tissus de crown gall. Bull Soc Chim Fr 17:979–991Google Scholar
  2. Bomhoff GH (1974) Studies on crown gall—a plant tumour. Investigations on protein composition and on the use of guanidine compounds as a marker for transformed cells. Ph D Thesis, University of Leiden, N.L.Google Scholar
  3. Bomhoff GH, Klapwijk PM, Kester HC, Schilperoort RA, Hernalsteens JP, Schell J (1976) Octopine and nopaline synthesis and breakdown genetically controlled by a plasmid of Agrobacterium tumefaciens. Mol Gen Genet 145:177–181Google Scholar
  4. Casse F, Boucher C, Julliot JS, Michel M, Dénarié J (1979) Identification and characterization of large plasmids in Rhizobium meliloti using agarose gel electrophoresis. J Gen Microbiol 113:229–242Google Scholar
  5. Chilton MD, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271Google Scholar
  6. Chilton MD, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempé J (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host-plant root cells. Nature (London) 295:432–434Google Scholar
  7. Costantino P, Mauro ML, Micheli G, Risuelo G, Hooykaas PJJ, Schilperoort RA (1981) Fingerprinting and sequence homology of plasmids from different virulent strains of Agrobacterium rhizogenes. Plasmid 5:170–182Google Scholar
  8. Coxon DT, Davies AMC, Fenwick GR, Self R, Firmin JL, Lipkin D, Janes NF (1980) Agropine, a new amino acid derivative from crown gall tumours. Tetrahedron Lett 21:495–498Google Scholar
  9. Dawson RMC, Elliot DC, Elliot WH, Jones KM (1968) Data for biochemical research, 2nd ed. Clarendon Press, Oxford, p 545Google Scholar
  10. Ellis JG, Kerr A, Petit A, Tempé J (1982) Conjugal transfer of nopaline and agropine Ti-plasmids-The role of agrocinopines. Mol Gen Genet 186:269–274Google Scholar
  11. Ellis JG, Murphy PJ (1981) Four new opines from crown gall tumors — their detection and properties. Mol Gen Genet 181:36–43Google Scholar
  12. Firmin JL, Fenwick RG (1977) N2-(1-3-dicarboxypropyl) ornithine in crown gall tumours. Phytochemistry 16:761–762Google Scholar
  13. Goldmann A, Thomas DW, Morel G (1969) Sur la structure de la nopaline, métabolite anormal de certaines tumeurs de crown gall. CR Acad Sci Paris, Sér D. 268:852–854Google Scholar
  14. Guyon P, Chilton MD, Petit A, Tempé J (1980) Agropine in “null type” crown gall tumors: evidence for the genrality of the opine concept. Proc Natl Acad Sci USA 77:2693–2697Google Scholar
  15. Harrap FEG (1960) The detection of phosphate esters on paper chromatograms. Analyst 85:452Google Scholar
  16. Kemp JD (1977) A new amino acid derivative present in crown gall tumor tissue. Biochem Biophys Res Commun 74:862–868Google Scholar
  17. Kerr A (1969) Transfer of virulence between isolates of Agrobacterium. Nature (London) 223:1175–1176Google Scholar
  18. Kerr A (1971) Acquisition of virulence by non-pathogenic isolates of Agrobacterium. Physiol Plant Pathol 1:241–246Google Scholar
  19. Kerr A, Robert WP (1976) Agrobacterium: Correlation between and transfer of pathogenicity, octopine and nopaline metabolism and bacteriocin 84 sensitivity. Physiol Plant Pathol 4:37–44Google Scholar
  20. Lemmers M, Holsters M, Engler G, Van Montagu M, Leemans J, De Greve H, Hernalsteens JP, Willmitzer L, Otten L, Schroeder J, Schell JT (1981) Le plasmide Ti, vecteur potentiel pour la modification génétique des plantes. CR Acad Agric (Paris) 67:1052–1065Google Scholar
  21. Lippincott JA, Beiderbeck R, Lippincott BB (1973) Utilisation of octopine and nopaline by Agrobacterium sp.. J Bacteriol 116:378–383Google Scholar
  22. Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue. Physiol Plant 18:100–127Google Scholar
  23. Ménagé A, Morel G (1964) Sur la présence d'octopine dans les tissus de crown gall. CR Acad Sci Paris 259:4795–4796Google Scholar
  24. Ménagé A, Morel G (1965) Sur la présence d'un acide aminé nouveau dans le tissu de crown gall. CR Soc Biol Ses Fil 159:561–562Google Scholar
  25. Monnier M (1976) Culture in vitro de l'embryon immature de Capsella bursa-pastoris Moench. Rev Cyt Biol Vég 39:1–120Google Scholar
  26. Montoya A, Chilton MD, Gordon MP, Sciaky D, Nester EW (1977) Octopine and nopaline metabolism in Agrobacterium tumefaciens and crown gall tumor cells: role of plasmid genes. J Bacteriol 129:101–107Google Scholar
  27. Moore L, Warren G, Strobel G (1979) Involvement of a plasmid in the hairy root disease of plants caused by Agrobacterium rhizogenes. Plasmid 2:617–626Google Scholar
  28. Morel G, Wetmore RH (1951) Fern callus culture. Amer J Bot 38:141–143Google Scholar
  29. Murai N, Kemp JD (1982) Octopine synthase m-RNA isolated from sunflower crown gall callus is homologous to the Tiplasmid of Agrobacterium tumefaciens. Proc Natl Acad Sci USA 79:86–90Google Scholar
  30. Petit A, Delhaye S, Tempé J, Morel G (1970) Recherches sur les guanidines des tissus de crown gall. Mise en évidence d'une relation biochimique spécifique entre les souches d'Agrobacterium tumefaciens et les tumeurs qu'elles induisent. Physiol Vég 8:205–213Google Scholar
  31. Petit A, Dessaux Y, Tempé J (1978a) The biological significance of opines. I. A study of opine catabolism by Agrobacterium tumefaciens. Proc 4th Int Conf Plant Pathog Bact, Ridé M (ed). INRA-Angers, pp 143–152Google Scholar
  32. Petit A, Tempé J (1978) Isolation of Agrobacterium Ti-plasmid regulatory mutants. Mol Gen Genet 167:147–155Google Scholar
  33. Petit A, Tempé J, Kerr A, Holsters M, Van Montagu M, Schell J (1978b) Substrate induction of conjugative activity of Agrobacterium tumefaciess Ti-plasmids. Nature (London) 271:570–571Google Scholar
  34. Petit A, Tourneur J (1972) Perte de virulence associée à la perte d'une activité enzymatique chez Agrobacterium tumefaciens. CR Acad Sci Paris, Ser D 282:69–71Google Scholar
  35. Roche J, Thoai NV, Hatt HL (1954) Métabolisme des dérivés guanidylés. III—Analyse chromatographique des dérivés guanidylés. Biochim Biophys Acta 14:71–75Google Scholar
  36. Rosenberg C, Casse-Delbart F, Dusha I, David M, Boucher C (1982) Megaplasmids in the plant-associated bacteria Rhizobium meliloti and Pseudomonas Solanacearum. J Bacteriol 150:402–406Google Scholar
  37. Schell J (1978) The use of the Ti-plasmid as a vector for the introduction of foreign DNA into plants. Proc 4th Int Conf Plant Pathog Bact, Ridé M (ed). INRA-Angers, pp 115–126Google Scholar
  38. Schell J, Van Montagu M, De Beuckeleer M, De Block M, Depicker A, De Wilde M, Engler G, Genetello C, Hernalsteens JP, Holsters M, Seurinck J, Silva B, Van Vliet F, Villaroel R (1979) Interaction and DNA transfer between Agrobacterium tumefaciens, the Ti-plasmid and the plant host. Proc Royal Soc London, Ser B. 204:251–266Google Scholar
  39. Schroeder J, Schroeder G, Huisman H, Schilperoort RA, Schell J (1981) The m-RNA for lysopine dehydrogenase in plant tumor cells is complementary to a Ti-plasmid fragment. FEBS Lett 129:166–138Google Scholar
  40. Spano L, Pomponi M, Costantino P, Van Slogteren GMS, Tempé J (1983) Identification of T-DNA in the root-inducing plasmid of the agropine type Agrobacterium rhizogenes 1855 Plant Mol Biol, in pressGoogle Scholar
  41. Tate ME, Ellis JG, Kerr A, Tempé J, Murray KE, Shaw KJ (1982) Agropine: a revised structure. Carbohydrate Research 104:105–120Google Scholar
  42. Tempé J (1983) Chemistry and biochemistry of open-chain iminoacids. In: Weinstein B (ed) Chemistry and biochemistry of amino-acids, peptides and proteins. Marcel Dekker, New York (in press)Google Scholar
  43. Tempé J, Estrade C, Petit A (1978) The biological signifiance of opines. II. The conjugative activity of the Ti-plasmids of Agrobacterium tumefaciens. Proc 4th Int Conf Plant Pathog Bact, Ridé M (ed). INRA-Angers, pp 153–160Google Scholar
  44. Tempé J, Guyon P, Tepfer D, Petit A (1979) The role of opines in the ecology of the Ti-plasmids of Agrobacterium. In: Timmis KN, Pühler A (eds) Plasmids of medical, environmental, and commercial importance. Elsevier/North Holland Biomedical Press, Amsterdam, 353–363Google Scholar
  45. Tempé J, Petit A, Bannerot H (1982) Présence de composés semblables à des opines dans des nodosités de luzerne. CR Acad Sci Paris, Série III 295:432–434Google Scholar
  46. Tempé J, Petit A, Holsters M, Van Montagu M, Schell J (1977) Thermosensitive step associated with transfer of the Ti-plasmid during conjugation: Possible relation to transformation in crown gall. Proc Natl Acad Sci USA 74:2848–2849Google Scholar
  47. Tempé J, Schell J (1977) Is crown gall a natural instance of gene transfer? In: Legocki AB (ed) Translation of natural and synthetic polynucleotides. Univ. of Agriculture, Poznan, pp 415–420Google Scholar
  48. Tepfer DA, Tempé J (1981) Production d'agropine par des racines formées sous l'action d'Agrobacterium rhizogenes. CR Acad Sci Paris, Ser III. 292:153–156Google Scholar
  49. Trevelyan WE, Procter DP, Harrison JP (1950) Detection of sugars on paper chromatograms. Nature (London) 166:444–445Google Scholar
  50. Van Larebeke N, Engler G, Holsters M, Van den Elsacker S, Zaenen I, Schilperoort RA, Schell J (1974) Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature (London) 252:169–170Google Scholar
  51. Van Larebeke N, Gonetello C, Schell J, Schilperoort RA, Hermans AK, Hernalsteens JP, Van Montagu M (1975) Acquisition of tumour-inducing ability by non-oncogenic bacteria as a result of plasmid transfer. Nature (London) 255:742–743Google Scholar
  52. Vervliet G, Holsters M, Teuchy H, Van Montagu M, Schell J (1974) Characterization of different plaque forming and defective temperate phages in Agrobacterium strains. J Gen Virol 26:33–48Google Scholar
  53. Watson B, Currier TC, Gordon MP, Chilton MD, Nester EW (1975) Plasmid required for virulence of Agrobacterium tumefaciens. J Bacteriol 123:255–264Google Scholar
  54. White FF, Ghidossi G, Gordon MP, Nester EW (1982) Tumor induction by Agrobacterium rhizogenes involves the transfer of plasmid DNA to the plant genome. Proc Natl Acad Sci USA 79:3193–3197Google Scholar
  55. White FF, Nester EW (1980a) Hairy root: Plasmid encodes virulence traits in Agrobacterium rhizogenes. J Bacteriol 141:1134–1141Google Scholar
  56. White FF, Nester EW (1980b) Relationship of plasmids responsible for hairy root and crown gall tumorigenicity. J Bacteriol 144:710–720Google Scholar
  57. Willmitzer L, De Beuckeleer M, Lemmers M, Van Montagu M, Schell J (1980) The Ti-plasmid derived T-DNA is present in the nucleus and absent from plastids of plant crown gall cells. Nature (London) 287:359–361Google Scholar
  58. Willmitzer L, Sanchez-Serrano J, Buschfeld E, Schell J (1982) DNA from Agrobacterium rhizogenes is transferred to and expressed in axenic hairy root plant tissues. Mol Gen Genet 186:16–22Google Scholar
  59. Yamada S, Itano HA (1966) Phenanthrene quinone as an analytical reagent for arginine and other monosubstituted guanidines. Biochim Biophys Acta 133:538–540Google Scholar
  60. Zaenen I, Van Larebeke N, Teuchy H, Van Montagu M, Schell J (1974) Supercoiled circular DNA in crown gall inducing Agrobacterium strains. J Mol Biol 86:109–127Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Annik Petit
    • 1
  • Chantal David
    • 1
  • Gary A. Dahl
    • 1
  • Jeffrey G. Ellis
    • 1
  • Pierre Guyon
    • 1
  • Francine Casse-Delbart
    • 1
  • Jacques Tempé
    • 1
  1. 1.Groupe de Recherche sur les Intéractions entre Plantes et MicroorganismesUniversité de Paris-Sud, Institut de MicrobiologieOrsay, CedexFrance

Personalised recommendations