Molecular and General Genetics MGG

, Volume 211, Issue 2, pp 266–271 | Cite as

Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides

  • George W. Haughn
  • Julie Smith
  • Barbara Mazur
  • Chris Somerville


A gene encoding acetolactate synthase was cloned from a chlorsulfuron-resistant mutant of Arabidopsis. The DNA sequence of the mutant gene differed from that of the wild type by a single base pair substitution. When introduced into tobacco by Ti plasmid-mediated transformation the gene conferred a high level of herbicide resistance. These results suggest that the cloned gene may confer agronomically useful levels of herbicide resistnace in other crop species, and that it may be useful as a selectable marker for plant transformation experiments.

Key words

Ti plasmid Chlorsulfuron Transformation Acetohydroxy acid synthase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. An G, Watson BD, Stachel S, Gordon MP, Nester EW (1985) New cloning vectors for transformation of higher plants. EMBO J 4:277–281Google Scholar
  2. Buchholz WG, Thomashow MF (1984) Comparison of T-DNA oncogene complements of Agrobacterium tumefaciens tumorinducing plasmids with limited and wide host ranges. J Bacteriol 160:319–326Google Scholar
  3. Chaleff RS, Mauvais CJ (1984) Acetolactate synthase is the site of action of two sulfonylurea herbicides in higher plants. Science 224:1443–1445Google Scholar
  4. Chaleff RS, Ray TB (1984) Herbicide-resistant mutants from tobacco cell cultures. Science 223:1148–1151Google Scholar
  5. Comai L, Facciotti D, Hiatt WR, Thompson G, Rose RE, Stalker DM (1985) Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317:741–744Google Scholar
  6. Dhaese P, Degreve H, Decraemer H, Schell J, Van Montagu M (1979) Rapid mapping of transposon insertion and deletion mutations in the large Ti-plasmids of Agrobacterium tumefaciens. Nucleic Acids Res 7:1837–1849Google Scholar
  7. Estelle MA, Somerville CR (1986) The mutants of Arabidopsis. Trends Genet 2:89–93Google Scholar
  8. Frischauf AM, Lehrach H, Poustka A, Murray N (1983) Lambda replacement vectors carrying polylinker sequences. J Mol Biol 170:827–842Google Scholar
  9. Haughn GW, Somerville CR (1986) Sulfonylurea-resistant mutants of Arabidopsis thaliana. Mol Gen Genet 204:430–434Google Scholar
  10. Haughn GW, Somerville CR (1987) Selection for herbicide resistance at the whole-plant level. In: Lebaron HM, Mumma RO, Honeycutt RC, Duesing JH (eds) Biotechnology in Agricultural Chemistry. American Chemical Society, Washington, DC, pp 98–107Google Scholar
  11. Karn J, Matthes HWD, Gait MJ, Brenner S (1984) A new selective phage cloning vector λ2001, with sites for XbaI, BamHI, HindIII, EcoRI, SstI and XhoI. Gene 32:217–224Google Scholar
  12. LaRossa RA, Falco SC (1984) Amino acid biosynthetic enzymes as targets of herbicide action. Trends Biotechnol 2:158–161Google Scholar
  13. LaRossa RA, Schloss JW (1984) The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium. J Biol Chem 259:8753–8757Google Scholar
  14. Leutwiler LS, Hough-Evans BR, Meyerowitz EM (1984) The DNA of Arabidopsis. Mol Gen Genet 194:15–23Google Scholar
  15. Maliga P, Breznovits AS, Marton L (1973) Streptomycin-resistant plants from callus cultures of haploid tobacco. Nature New Biol 244:29–30Google Scholar
  16. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  17. Mazur BJ, Chui CF, Smith JK (1987) Isolation and characterization of plant genes coding for acetolactate synthase, the target enzyme for two classes of herbicides. Plant Physiol 85: 1110–1117Google Scholar
  18. Merlo DJ, Nutter RC, Montoya AL, Garfinkl DJ, Drummond MH, Chilton MD, Gordon MP, Nester EW (1980) The boundaries and copy numbers of Ti plasmid T-DNA vary in crown gall tumors. Mol Gen Genet 177:637–643Google Scholar
  19. meyerowitz EM, Pruitt RE (1985) Arabidopsis thaliana and plant molecular genetics. Science 226:1214–1218Google Scholar
  20. Rogers SG, Horsch RB, Fraley RT (1986) Gene transfer in plants: production of transformed plants using Ti plasmid vectors. Methods Enzymol 118:627–640Google Scholar
  21. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467Google Scholar
  22. Shah DM, Horsch RB, Klee HJ, Kishore GM, Winter JA, Tumer NE, Hironaka CM, Sanders PR, Gasser CS, Aykent S, Siegel NR, Rogers SG, Fraley RT (1986) Engineering herbicide tolerance in transgenic plants Science 233:478–481Google Scholar
  23. Yadav N, McDevitt RE, Benard S, Falco SC (1986) Single amino acid substitutions in the enzyme acetolactate synthase confer resistance to the herbicide sulfometuron methyl. Proc Natl Acad Sci USA 83:4418–4422Google Scholar
  24. Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119Google Scholar
  25. Zambryski P, Joos H, Genetello C, Leemans J, Van Montagu M, Shell J (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2:2143–2150Google Scholar
  26. Zimmerman JL, Goldberg RB (1977) DNA sequence organization in the genome of Nicotiana tabacum. Chromosoma 59:227–252Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • George W. Haughn
    • 1
  • Julie Smith
    • 2
  • Barbara Mazur
    • 2
  • Chris Somerville
    • 1
  1. 1.MSU-DOE Plant Research LaboratoryMichigan State UniversityEast LansingUSA
  2. 2.Central Research and Development DepartmentWilmingtonUSA

Personalised recommendations