Archive for History of Exact Sciences

, Volume 21, Issue 2, pp 129–160

The Gibbs-Wilbraham phenomenon: An episode in fourier analysis

  • Edwin Hewitt
  • Robert E. Hewitt
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    Abramowitz, Milton, & Irene A. Stegun, editors. Handbook of mathematical functions with formulas, graphs and mathematical tables. Tenth printing, with corrections. National Bureau of Standards, Applied Mathematics Series, #55. Washington, D. C.: U.S. Government Printing Office, 1972.Google Scholar
  2. 2.
    Bari, Nina K. [Бари, Нина К.]. Trigonometričeskie rjady [Т ригонометрические ряды]. Moskva: Gos. Izdat. fiz.-mat. Literatury, 1961.Google Scholar
  3. 3.
    Boas, R. P., Jr. Partial sums of infinite series, and how they grow. Amer. Math. Monthly 84 (1977), 237–258.Google Scholar
  4. 4.
    Bôcher, Maxime. Introduction to the theory of Fourier's series. Ann. of Math. (2) 7 (1905–1906), 81–152.Google Scholar
  5. 5.
    Bôcher, Maxime. On Gibbs's Phenomenon. J. reine angew. Math. 144 (1914), 41–47.Google Scholar
  6. 6.
    Du Bois-Reymond, Paul. Über die sprungweisen Werthänderungen analytischer Functionen. Math. Ann. 7 (1874), 241–261.Google Scholar
  7. 7.
    Burkhardt, H. Trigonometrische Reihen und Integrale bis etwa 1850. Encyklopädie der math. Wissenschaften, IIA 12. Leipzig: B. G. Teubner, 1914, pp. 819–1354.Google Scholar
  8. 8.
    Carslaw, H.S. A trigonometrical sum and the Gibbs' phenomenon in Fourier's series. Amer. J. Math. 39 (1917), 185–198.Google Scholar
  9. 9.
    Carslaw, H. S. A historical note on Gibbs' phenomenon in Fourier's series and integrals. Bull. Amer. Math. Soc. 31 (1925), 420–424.Google Scholar
  10. 10.
    Carslaw, H. S. Gibbs's phenomenon in the sum (C, r), for r>0, of Fourier's integral. J. London Math. Soc. 1 (1926), 201–204.Google Scholar
  11. 11.
    Carslaw, H. S. Introduction to the theory of Fourier's series and integrals. Third edition, revised and enlarged. London: Macmillan & Co., 1930. New York: Dover Publ. Co. reprint, 1952.Google Scholar
  12. 12.
    Cooke, Richard G. A case of Gibbs's phenomenon. J. London Math. Soc. 3 (1928), 92–98.Google Scholar
  13. 13.
    Cooke, Richard G. Disappearing Gibbs's phenomena. Proc. London Math. Soc. (2) 30 (1927–1930), 144–164.Google Scholar
  14. 14.
    Cooke, Richard G. Gibbs's phenomenon in Fourier-Bessel series and integrals. Proc. London Math. Soc. (2) 27 (1928), 171–192.Google Scholar
  15. 15.
    Cooke, Richard G. Gibbs's phenomenon in Schlömilch series. J. London Math. Soc. 4 (1928), 18–21.Google Scholar
  16. 16.
    Cramér, Harald. Études sur la sommation des séries de Fourier. Arkiv för Mathematik, Astronomi och Fysik 13 (1919), N° 20, 1–21.Google Scholar
  17. 17.
    Davis, Harry F. Fourier series and orthogonal functions. Boston, Mass: Allyn and Bacon, 1963.Google Scholar
  18. 18.
    Dym, H., & H. P. McKean. Fourier series and integrals. New York: Academic Press, 1972.Google Scholar
  19. 19.
    Fejér, Leopold. Über die Bestimmung des Sprunges der Funktion aus ihrer Fourierreihe. J. reine angew. Math 142 (1913), 165–188.Google Scholar
  20. 20.
    Fejér, Leopold. Über konjugierte trigonometrische Reihen. J. reine angew. Math. 144 (1914), 48–56.Google Scholar
  21. 21.
    Fejér, Leopold. Einige Sätze, die sich auf das Vorzeichen einer ganzen rationalen Funktion beziehen. Monatsh. Math. 35 (1928), 305–344.Google Scholar
  22. 22.
    Gibbs, Josiah Willard. Letter in Nature 59 (1898–1899), 200. Also in Collected Works, Vol. II. New York: Longmans, Green & Co., 1927, 258–259.Google Scholar
  23. 23.
    Gibbs, Josiah Willard. Letter in Nature 59 (1898–1899), 606. Also in Collected Works, Vol. II. New York: Longmans, Green & Co., 1927, 259–260.Google Scholar
  24. 24.
    Gronwall, T. H. Über die Gibbsche Erscheinung und die trigonometrischen Summen \(sin x + \tfrac{1}{2}sin 2x + \cdots + \frac{1}{n}sin n x\). Math. Ann. 72 (1912), 228–243.Google Scholar
  25. 25.
    Gronwall, T. H. Zur Gibbschen Erscheinung. Ann. of Math. (2) 31 (1930), 232–240.Google Scholar
  26. 26.
    Hardy, G. H., & W. W. Rogosinski. Notes on Fourier series (II): on the Gibbs phenomenon. J. London Math. Soc. 18 (1943), 83–87.Google Scholar
  27. 27.
    Hardy, G. H., & W. W. Rogosinski. Fourier series. Second edition. Cambridge Tracts Math. and Math. Phys., No. 38. London: Cambridge University Press, 1950.Google Scholar
  28. 28.
    Hyltén-Cavallius, Carl. Geometrical methods applied to trigonometrical sums. Kungl. Fysiografiska Sällskapets i Lund Förhandlingar [Lund Universitet, Mat. Seminar Meddelanden]. Band 21, Nr. 1, 1950, 19 pp.Google Scholar
  29. 29.
    Jackson, Dunham. Über eine trigonometrische Summe. Rend. Circ. Mat. Palermo 32 (1911), 257–262.Google Scholar
  30. 30.
    Knopp, Konrad. Theorie und Anwendung der unendlichen Reihen. Zweite Auflage. Berlin: Julius Springer, 1924. English translation, London and Glasgow: Blackie & Son, 1928. Second English edition, 1948. New York: Hafner Publishing Co., reprint of 1948 edition, 1971.Google Scholar
  31. 31.
    Landau, Edmund. Über eine trigonometrische Ungleichung. Math. Z. 37 (1933), 36.Google Scholar
  32. 32.
    Love, A. E. H. Letter in Nature 58 (1898), 569–570.Google Scholar
  33. 33.
    Love, A. E. H. Letter in Nature 59 (1898–1899), 200–201.Google Scholar
  34. 34.
    Love, A. E. H. Letter in Nature 60 (1899), 100–101.Google Scholar
  35. 35.
    Michelson, Albert A. Letter in Nature 58 (1898), 544–545.Google Scholar
  36. 36.
    Michelson, Albert A. Letter in Nature 59 (1898–1899), 200.Google Scholar
  37. 37.
    Michelson, Albert A., & S. W. Stratton. A new harmonic analyser. Philosophical Magazine (5) 45 (1898), 85–91.Google Scholar
  38. 38.
    Moore, C. N. Note on Gibbs' phenomenon. Bull. Amer. Math. Soc. 31 (1925), 417–419.Google Scholar
  39. 39.
    Newman, Francis W. On the values of a periodic function at certain limits. Cambridge & Dublin Math. J. 3 (1848), 108–112.Google Scholar
  40. 40.
    Poincaré, Henri. Letter to A. A. Michelson. Nature 60 (1899), 52.Google Scholar
  41. 41.
    Turán, Paul. Über die partiellen Summen der Fourierreihen. J. London Math. Soc. 13 (1938), 278–282.Google Scholar
  42. 42.
    Weyl, Hermann. Die Gibbsche Erscheinung in der Theorie der Kugelfunktionen. Rend. Circ. Math. Palermo 29 (1910), 308–323. Also in Gesammelte Abhandlungen. Berlin-Heidelberg-New York: Springer-Verlag, 1968, Vol. I, 305–320.Google Scholar
  43. 43.
    Weyl, Hermann. Über die Gibbssche Erscheinung und verwandte Konvergenzphänomene. Rend. Circ. Mat. Palermo 30 (1910), 377–407. Also in Gesammelte Abhandlungen. Berlin-Heidelberg-New York: Springer-Verlag, 1968, Vol. I, 321–353.Google Scholar
  44. 44.
    Wilbraham, Henry. On a certain periodic function. Cambridge & Dublin Math. J. 3 (1848), 198–201.Google Scholar
  45. 45.
    Wilton, J. R. The Gibbs phenomenon in series of Schlömilch type. Messenger of Math. 56 (1926–1927), 175–181.Google Scholar
  46. 46.
    Wilton, J. R. The Gibbs phenomenon in Fourier-Bessel series. J. reine angew. Math. 159 (1928), 144–153.Google Scholar
  47. 47.
    Zalcwasser, Zygmunt. Sur le phénomène de Gibbs dans la théorie des séries de Fourier des fonctions continues. Fund. Math. 12 (1928), 126–151.Google Scholar
  48. 48.
    Zygmund, Antoni. Trigonometrical series. Warszawa-Lwów: Monografje Matematyczne, Vol. V., 1935.Google Scholar
  49. 49.
    Zygmund, Antoni. Trigonometric series. Second Edition, Volume I. Cambridge, England: Cambridge University Press, 1959.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Edwin Hewitt
    • 1
    • 2
  • Robert E. Hewitt
    • 1
  1. 1.The University of WashingtonSeattle
  2. 2.Lockheed Missiles and Space CompanySunnyvale

Personalised recommendations