Archive for History of Exact Sciences

, Volume 31, Issue 1, pp 15–34 | Cite as

The early history of the hypergeometric function

  • Jacques Dutka
Article

Keywords

Hypergeometric Function Early History 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Askey, R. [1], “A note on the history of series,” MRC Technical Summary Report # 1532, March 1975, University of Wisconsin.Google Scholar
  2. Binet, Jacques P. M. [1], “Mémoire sur les intégrales définies eulériennes,” Journal de l'École Polytechnique, Cahier XXVII (1839), 123–343.Google Scholar
  3. Davis, Philip J. [1], “Leonhard Euler's Integral ...,” American Mathematical Monthly Vol. 66 (1959), 849–869.Google Scholar
  4. Euler, Leonhard [1], “De progressionibus transcendentibus ...,” Opera Omnia, Ser. 1, Vol. 14, 1–24, Leipzig and Berlin, 1925.Google Scholar
  5. Euler, Leonhard [2], “De curva hypergeometrica hac aequatione expressa y=1 · 2 · 3 · ... x,” Opera Omnia, Ser. 1, Vol. 28, 41–98.Google Scholar
  6. Euler, Leonhard [3], “De termino generali serierum hypergeometricarum,” Opera Omnia, Ser. 1, Vol. 16, Part 1, 139–162.Google Scholar
  7. Euler, Leonhard [4], “Specimen transformationis singularis serierum,” Opera Omnia, Ser. 1, Vol. 16, Part 2, 41–55.Google Scholar
  8. Euler, Leonhard [5], “De resolutione formula integralis ∫x m−1 dx (Δ+x n)λ...,” Opera omnia, Ser. 1, Vol. 19, 110–128.Google Scholar
  9. Euler, Leonhard [6], Institutionum Calculi Integralis Vol. II, Petropolis, 1769, reprinted in Opera Omnia, Ser. 1, Vol. 12.Google Scholar
  10. Euler, Leonhard [7], “Comparatio valorum formulae integralis \(\int {\frac{{x^{p - 1} dx}}{{\sqrt {\left( {1 - x^n } \right)^{n - q} } }}} \) a termino x=0 usque ad x=1 extensae,” Opera Omnia, Ser. 1, Vol. 18, 392–435.Google Scholar
  11. Fuss, Nicolas [1], “De resolutione formulae integralis ∫x m−1 dx (Δ + x n)λ...,” Nova Acta Acad. Scient. Petropolitanae, T. XV (1799–1802), (1806), 55–70.Google Scholar
  12. Gauss, C. F. [1], “Disquisitiones Generales Circa Seriem Infinitam ...,” (1813), Werke, Bd. 3, 124–162.Google Scholar
  13. Gauss, C. F. [2], “Determinatio seriei nostrae per aequationem differentialem,” Werke, Bd. 3 (1876), 207–229.Google Scholar
  14. Gauss, C. F. [3], “Zur Theorie der unendlichen Reihe F(α, β, γ, χ)”, Werke, Bd. 10, Teil 1, (1917), 326–359.Google Scholar
  15. Heine, E. [1], Handbuch der Kugelfunctionen, 1878, reprinted Würzburg, 1961.Google Scholar
  16. Kummer, E. E. [1], “Über die hypergeometrische Reihe ...,” Journal für die reine and angewandte Mathematik, Bd. 15 (1836), 39–83, 127–172.Google Scholar
  17. Lambert, J. H. [1], “Mémoire sur quelques propriétés remarquables des quantités transcendantes circulaires et logarithmiques,” Mémoires de l'Académie des sciences de Berlin, [17] (1761), 1768, 265–322.Google Scholar
  18. Legendre, A. M. [1], Exercises de Calcul Intégral, II, Quatrième Partie, Sect. II, Paris, 1816.Google Scholar
  19. Markuschewitsch, A. I. [1], “Die Arbeiten von C. F. Gauss über Funktionentheorie” in C. F. Gauss: Leben und Werk, Gauss Gedenkband, ed. by H. Reichardt, Berlin, 1955, 151–182.Google Scholar
  20. Newton, Isaac [1], The Correspondence of ..., Vol. II (1664–1666), Cambridge, 1960, ed. by H. W. Turnbull.Google Scholar
  21. Newton, Isaac [2], The Mathematical Papers of ..., Vol. VII (1691–1695), Cambridge, 1976, ed. by D. T. Whiteside.Google Scholar
  22. Pfaff, J. F. [1], “Nova disquisitio de integratione aequationis ...,” Disquisitiones Analytica, I, 135–224, Helmstedt, 1797.Google Scholar
  23. Pfaff, J. F. [2], “Observationes analyticae ad L. Euleri Institutiones Calculi Integralis, Vol. IV, Supplem. II et IV, Nova Acta Academiae Scientiarum Petropolitanae, Tome XI (1797), Histoire, 38–57.Google Scholar
  24. Reiff, R. [1], Geschichte der unendlichen Reihen, Tübingen, 1889.Google Scholar
  25. Schlesinger, L. [1], “Ueber Gauss' Arbeiten zur Funktionentheorie,” Carl Friedrich Gauss Werke, Bd. 10, Teil 2, (1922–1933), Nr. 2.Google Scholar
  26. Scriba, Christoph J. [1], “Von Pascals Dreieck zu Eulers Gamma Funktion ...,” Mathematical Perspectives, New York, 1981, ed. by J. W. Dauben, 221–235.Google Scholar
  27. Stirling, James [1], Methodus Differentialis ..., London, 1730.Google Scholar
  28. Thomae, L. W. [1], “Ueber die Kettenbruchentwicklung der Gauss'schen Quotienten F(α, β+1, γ+1, x)/F(α, β, γ, x),” Journal für die reine und angewandte Mathematik, Bd. 67 (1867), 299–309.Google Scholar
  29. Tweedie, Charles [1], James Stirling ..., Oxford, 1922.Google Scholar
  30. Vorsselman de Heer, P. E. O. [1], “Specimen inaugurale de fractionibus continuis,” Utrecht, 1833.Google Scholar
  31. Wallis, John [1], Arithmetica Infinitorum, 1656, Opera Mathematica, Vol. I, Oxford, 1695.Google Scholar
  32. Wallis, John [2], A Treatise of Algebra ..., London, 1685.Google Scholar

Copyright information

© Springer-Verlag GmbH & Co 1984

Authors and Affiliations

  • Jacques Dutka
    • 1
  1. 1.Audits & Surveys, Inc.New York

Personalised recommendations