Chromosoma

, Volume 86, Issue 4, pp 577–593 | Cite as

The synaptonemal complexes of Caenorhabditis elegans: pachytene karyotype analysis of male and hermaphrodite wild-type and him mutants

  • Paul Goldstein
Article

Abstract

Only five synaptonemal complexes (SC), representing the 5 autosomes, are present in wild-type, him-4 and him-8, Caenorhabditis elegans males, whereas there are six SCs, accounting for 5 autosomal bivalents and the XX bivalent, in the C. elegans hermaphrodite. The univalent X chromosome of the male is present as a heterochromatic ‘X-body’ in spermatocyte pachytene nuclei. The XX bivalent in wild-type, him-4 and him-8 hermaphrodites (SC1, 2.5 μm in length) represented 6% of the total karyotype length and a SC of this size is missing from the respective male karyotypes. This corresponds with the fact that the total male karyotype length is only approximately 94% that of the hermaphrodite. Associated with the central element of the SC are structures termed ‘SC knobs’ that were first described in the wild-type hermaphrodite. The six SC knobs present in the wild-type hermaphrodite oocyte pachytene nuclei and the two SC knobs in the male spermatocyte pachytene nuclei are apparently randomly placed with the exception that they are never found at the ends of the SC. This is also true in him-4 and him-8 in which case there are 3 and zero SC knobs in the hermaphrodites, respectively, and one SC knob each in the male pachytene nuclei. The decrease in number of SC knobs in hermaphrodite to male represents a true sex difference. The presence or absence of the SC knobs may influence the X chromosome nondisjunction process and this effect is not localized to the region of the SC on which the SC knob is located.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, B., Hall, J.C.: Meiotic mutants: Genetic control of meiotic recombination and chromosome segregation. In: The genetics and biology of Drosophila (M. Ashburner and E. Novitski eds.) vol. IA, New York: Academic Press 1976Google Scholar
  2. Bogdanov, Yu. F.: Formation of cytoplasmic synaptonemal-like polycomplexes at zygotene in Ascaris suum male meiosis. Chromosoma (Berl.) 61, 1–21 (1977)Google Scholar
  3. Carpenter, A.T.C.: Synaptonemal complexes and recombination nodules in wild-type Drosophila melanogaster females. Genetics 92, 511–541 (1979)Google Scholar
  4. Carpenter, A.T.C.: EM autoradiographic evidence that DNA synthesis occurs at recombination nodules during meiosis in Drosophilia melanogaster females. Chromosoma (Berl.) 83, 59–80 (1981)Google Scholar
  5. Gillies, C.B.: The relationship between Synaptonemal complexes, recombination nodules and crossing over in Neurospora crassa bivalents and translocation quadrivalents. Genetics 91, 1–17 (1979)Google Scholar
  6. Goldstein, P.: Spermatogenesis and spermiogenesis in Ascaris suum. J. Morph. 154, 317–338 (1977)Google Scholar
  7. Goldstein, P.: Ultrastructural analysis of sex determination in Ascaris suum. Chromosoma (Berl.) 66, 59–69 (1978)Google Scholar
  8. Goldstein, P.: Sex determination in nematodes. In: Plant parasitic nematodes B. Zuckerman and R. Rhode eds.), vol. III. New York: Academic Press 1981Google Scholar
  9. Goldstein, P., Moens, P.B.: Karyotype analysis of Ascaris suum male and female pachytene nuclei by 3-D reconstruction from electron microscopy of serial sections. Chromosoma (Berl.) 58, 101–111 (1976)Google Scholar
  10. Goldstein, P., Slaton, D.E.: The synaptonemal complexes of Caenorhabditis elegans: Comparison of wild-type and mutant strains and pachytene karyotype analysis of wild-type. Chromosoma (Berl), 84, 585–597 (1982)Google Scholar
  11. Goldstein, P., Triantaphyllou, A.C.: Occurrence of synaptonemal complexes and recombination nodules in a meiotic race of Meloidogyne hapla and their absence in a mitotic race. Chromosoma (Berl.) 68, 91–100 (1978a)Google Scholar
  12. Goldstein, P., Triantaphyllou, A.C.: Karyotype analysis of Meloidogyne hapla by 3-D reconstruction of synaptonemal complexes from electron microscopy of serial sections. Chromosoma (Berl.) 70, 131–139 (1978b)Google Scholar
  13. Goldstein, P., Triantaphyllou, A.C.: Karyotype analysis of the plantparasitic nematode Heterodera glycines by electron microscopy. I. The diploid. J. Cell Sci. 40, 171–179 (1979)Google Scholar
  14. Goldstein, P., Triantaphyllou, A.C.: Karyotype analysis of the plantparasitic nematode Heterodera glycines by electron microscopy. II. The tetraploid and an aneuploid hybrid. J. Cell Sci. 43, 225–237 (1980)Google Scholar
  15. Goldstein, P., Triantaphyllou, A.C.: Pachytene karyotype analysis of tetraploid Meloidogyne hapla females by electron microscopy. Chromosoma (Berl.) 84, 405–412 (1981)Google Scholar
  16. Hirsh, D.C., Oppenheim, D., Klass, M.: Development of the reproductive system of Caenorhabditis elegans. Dev. Biol. 49, 200–219 (1976)Google Scholar
  17. Hodgkin, J., Horvitz, H.R., Brenner, S.: Nondisjunction mutants of the nematode Caenorhabditis elegans. Genetics 91, 67–94 (1979)Google Scholar
  18. Holm, P.B., Rasmussen, S.W., Wettstein, D. von: The possible contribution of electron microscopy to the understanding of the mechanism of nondisjunction in man. Mutation Res. 61, 115–119 (1979)Google Scholar
  19. Holm, P.B., Rasmussen, S.W.: Chromosome pairing, recombination nodules and chiasma formation in diploid Bombyx males. Carlsberg Res. Commun. 45, 483–548 (1980)Google Scholar
  20. Holm, P.B., Rasmussen, S.W.: Chromosome pairing, crossing over, chiasma formation and disjunction as revealed by 3-D reconstructions. In: International cell biology (H.G. Schweiger, ed.) Berlin: Springer-Verlag 1981Google Scholar
  21. Holm, P.B., Rasmussen, S.W., Zickler, D., Lu, B.C., Sage, J.: Chromosome pairing, recombination nodules and chiasma formation in the Basidiomycete Coprinus cinereus. Carlsberg Res. Commun. 46, 305–346 (1981)Google Scholar
  22. Nigon, V., Brun, J.: L'evolution des structures nucleaires dans l'ovogenese de Caenorhabditis elegans. Maupas 1900. Chromosoma (Berl.) 7, 129–169 (1955)Google Scholar
  23. Rasmussen, S.W.: The meiotic prophase in Bombyx mori females analysed by 3-D reconstruction of synaptonemal complexes. Chromosoma (Berl.) 54, 245–293 (1976)Google Scholar
  24. Rasmussen, S.W., Holm, P.B.: Human meiosis II. Chromsome pairing and recombination nodules in human spermatocytes. Carlsberg Res. Commun. 43, 275–327 (1978)Google Scholar
  25. Rose, A.M., Baillie, D.L.: The effect of temperature and parental age on recombination and nondisjunction in Caenorhabditis elegans. Genetics 92, 409–418 (1979)Google Scholar
  26. Westergaard, M., Wettstein, D. von: Studies on the mechanism of crossing over IV. The molecular organization of the synaptonemal complex in Neotilla. C.R. Trav. Lab. Carlsberg 37, 239–268 (1970)Google Scholar
  27. Wolf, N., Hirsh, D., McIntosh, J.R.: Spermatogenesis in males of the freeliving nematode Caenorhabditis elegans. J. Ultrastr. Res. 63, 155–169 (1978)Google Scholar
  28. Zickler, D.: Development of the synaptonemal complexes and the “recombination nodules” during meiotic prophase in the seven bivalents of the fungus Sordaria macrospora. Chromosoma (Berl.) 61, 289–316 (1977)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Paul Goldstein
    • 1
  1. 1.Department of BiologyUniversity of North Carolina at CharlotteCharlotteUSA

Personalised recommendations