Advertisement

Molecular and General Genetics MGG

, Volume 188, Issue 3, pp 480–485 | Cite as

Butyrate sensitive suppressor of position-effect variegation mutations in drosophila melanogaster

  • G. Reuter
  • R. Dorn
  • H. J. Hoffmann
Article

Summary

Mutations at a locus on chromosome II of D. melanogaster suppressing position-effect variegation mutations have been identified which display recessive butyrate sensitivity. Survival of homozygous mutant flies is significantly reduced on medium containing sodium n-butyrate. The butyrate sensitive suppressor mutations are further characterized by recessive female sterility and reduced survival of homozygotes. Complementation analysis showed their allelism. The locus of these mutations, Su-var (2) 1, has been localized to 40.5±0.2 and, by using interstitial duplications, to region 31CD on the cytogenetic map. Moreover, the mutant alleles of the Su-var (2) 1 locus display a lethal interaction with the heterochromatic Y chromosome. The presence or absence of a Y chromosome in males or females has a strong influence on the viability of homozygous or transheterozygous suppressor flies. All the genetic properties of Su-var (2) 1 mutants suggest strongly that this locus affects chromosome condensation.

Keywords

Sodium Strong Influence Butyrate Mutant Allele Complementation Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ananiev EV, Gvozdev VA (1974) Changed pattern of transcription and replication in polytene chromosomes of Drosophila melanogaster resulting from eu-heterochromatin rearrangement. Chromosoma 45:173–191Google Scholar
  2. Baker WK (1968) Position-effect variegation. Adv Genet 14:133–169Google Scholar
  3. Blumenfeld M, Orf JW, Sina BJ, Kreber RA, Callahan MA, Mullins JI, Snyder LA (1978) Correlation between phosphorylated H1 histones and satellite DNAs in Drosophila virilis. Proc Natl Acad Sci USA 75:866–870Google Scholar
  4. Boffa LC, Gruss RJ, Allfrey VG (1981) Manifold effects of sodium butyrate on nuclear functions. J Biol Chem 256:9612–9621Google Scholar
  5. Candido EPM, Reeves R, Davie JR (1978) Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14:105–113Google Scholar
  6. Davie JR, Candido EPM (1978) Acetylated H4 is preferentially associated with template active chromatin. Proc Natl Acad Sci USA 75:3574–3577Google Scholar
  7. Ephrussi B, Herold JL (1944) Studies of eye pigments of Drosophila. I Method of extraction and quantitative estimation of the pigment components. Genetics 29:148–175Google Scholar
  8. Hartmann-Goldstein IJ (1967) On the relationship between heterochromatisation and variegation in Drosophila with special reference to temperature-sensitive periods. Genet Res Camb 10:143–159Google Scholar
  9. Hoffmann HJ (1979) Characterization of suppressor and enhancer mutants for position-effect variegation. Ph D thesis, Martin Luther Univ. HalleGoogle Scholar
  10. Khesin RB, Bashkirov BA (1979) Influence of deficiency of the histone gene-containing 38B-40 region on X-chromosome template activity and the white gene position effect variegation in Drosophila melanogaster. Mol Gen Genet 162:323–328Google Scholar
  11. Lewis EB (1950) The phenomenon of position effect. Adv Genet 3:73–115Google Scholar
  12. Lindsley DL, Grell EM (1968) Genetic variations of Drosophila melanogaster. Carnegie Inst Washington Publ 627Google Scholar
  13. Lindsley DL, Sandler L, Baker BS, Carpenter ATC, Denell RB, Hall JC, Jacobs PA, Miklos GLG, Davis BK, Gethmann RC, Hardy RW, Hessler A, Miller SM, Nozawa H, Parry DM, Gould-Somero M (1972) Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics 71:157–184Google Scholar
  14. Moore GD, Procunier JD, Cross DP, Grigliatti TA (1979) Histone gene deficiencies and position-effect variegation in Drosophila. Nature 282:312–314Google Scholar
  15. Mottus R, Reeves R, Grigliatti TA (1980) Butyrate suppression of position-effect variegation in Drosophila melanogaster. Mol Gen Genet 178:465–469Google Scholar
  16. Prokovjeva-Belgovskaya AA (1947) Heterochromatisation as a change of chromosome cycle. J Genet 48:80–98Google Scholar
  17. Reuter G, Wolff I (1981) Isolation of dominant suppressor mutations for position-effect variegation in Drosophila melanogaster. Mol Gen Genet 182:516–519Google Scholar
  18. Reuter G, Werner W, Hoffmann HJ (1982a) Mutants affecting position-effect heterochromatinization in Drosophila melanogaster. Chromosoma 85:539–464Google Scholar
  19. Reuter G, Hoffmann HJ, Wolff I (1982b) Genetic study of position-effect variegation in Drosophila melanogaster. In (1)w m4 as a standard rearrangement for the isolation and characterization of suppressor and enhancer mutants. Biol Zbl (in press)Google Scholar
  20. Riggs MG, Whittaker RG, Neumann JR, Ingram VM (1977) n-Butyrate causes histone modification in HeLa and Friend erythroleukemic cells. Nature 268:462–464Google Scholar
  21. Sandler L (1977) Evidence for a set of closely linked autosomal genes that interact with sex-chromosome heterochromatin in Drosophila melanogaster. Genetics 86:567–582Google Scholar
  22. Sealy L, Chalkley R (1978) The effect of sodium butyrate on histone modification. Cell 14:115–121Google Scholar
  23. Spofford JB (1976) Position-effect variegation in Drosophila. In: Ashburner M, Novitski E (eds) The genetics and biology of Drosophila, vol 1 c. Academic Press, New York, pp 955–1018Google Scholar
  24. Zuckerkandl E (1974) Recherche sur les propriétés et l'activé biologique de la chromatine. Biochemie 56:937–954Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • G. Reuter
    • 1
  • R. Dorn
    • 1
  • H. J. Hoffmann
    • 1
  1. 1.Department of GeneticsMartin-Luther-UniversityHalle/S.German Democratic Republic

Personalised recommendations