Advertisement

Archive for History of Exact Sciences

, Volume 34, Issue 1–2, pp 1–140 | Cite as

Brook Taylor and the method of increments

  • L. Feigenbaum
Article

The following abbreviations are used in the bibliography

Acta Erud.

Acta Eruditorum

Mém. de l'Acad. Roy.

Mémoires de l' Académie Royale des Sciences de Paris

Phil. Trans.

Philosophical Transactions

Phil. Trans. Abr.

The Philosophical Transactions of the Royal Society of London, Abridged, ed. by Charles Hutton, George Shaw, and Richard Pearson London, 1809

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1937] Brook Taylor der Mathematiker und Philosoph: Beiträge zur Wissenschaftsgeschichte der Zeit des Newton-Leibniz-Streites Inaugural-Dissertation, Philipps-Universität, Marburg Würzburg, 1937Google Scholar
  2. Ball, W. W. Rouse [1889] A History of the Study of Mathematics at Cambridge Cambridge, 1889Google Scholar
  3. Ball, W. W. Rouse [1908] A Short Account of the History of Mathematics 4th ed. London, 1908Google Scholar
  4. Barlow, Peter [1814] A New Mathematical and Philosophical Dictionary London, 1814Google Scholar
  5. [1907] “The Correspondence of Brook Taylor” Bibliotheca Mathematica 3rd series 7 (1907): 367–371Google Scholar
  6. [1938] “Halley's Methods for Solving Equations” American Mathematical Monthly 45 (1938): 11–17Google Scholar
  7. Bernoulli, Jakob I [1697] “Solutio problematum fraternorum, peculiari Programmate Cal. Jan. 1697 Groningae, nec non Actorum Lips. mense Jun. & Dec. 1696, & Febr. propositorum: una cum propositione reciproca aliorum” Acta Erud. (May, 1697): 211–217Google Scholar
  8. Bernoulli, Jakob I [1701] “Analysis magni problematis isoperimetrici” Acta Erud. (May, 1701): 213–228Google Scholar
  9. Bernoulli, Jakob I [1703a] “Demonstration generale, du Centre de Balancement ou d'Oscillation, tirée de la Nature du Levier” Mém. de l'Acad. Roy. (1703): 78–84 Paris, 1720Google Scholar
  10. Bernoulli, Jakob I [1703b] “Extrait d'une lettre de Mr. Bernoulli, Profess. à Bâle, en date du 11. Sept. 1703, contenant l'application de sa Régle du Centre de Balancement à toutes sortes des figures” Mém. de l'Acad. Roy. (1703): 272–283 Paris, 1720Google Scholar
  11. Bernoulli, Jakob I [1704] “Demonstration du Principe de Mr. Huygens touchant le Centre de Balancement, et de l'identité de ce Centre avec celui de percussion” Mém. de l'Acad. Roy. (1704): 136–142 Paris, 1722Google Scholar
  12. Bernoulli, Johann I [1694] “Additamentum effectionis omnium quadraturarum & rectificationum curvarum per seriem quandam generalissimam” Acta Erud. (November, 1694): 437–441Google Scholar
  13. Bernoulli, Johann I [1706] “Solution du Problême proposé par M. Jacques Bernoulli dans les Actes de Leipsik du mois de May de l'année 1697” Mém. de l'Acad. Roy. (1706): 235–245 Paris, 1707Google Scholar
  14. Bernoulli, Johann I [1714a] “Meditatio de natura centri oscillationis” Acta Erud. (June, 1714: 257–272Google Scholar
  15. Bernoulli, Johann I [1714b] “Nouvelle theorie du centre d'oscillation” Mém. de l'Acad. Roy. (1714): 208–231 Paris, 1717Google Scholar
  16. Bernoulli, Johann I [1716] “Epistola pro eminente mathematico, Dn. Johanne Bernoulli, contra quendam ex Anglia antagonistam scripta” Acta Erud. (July, 1716): 296–315 Published anonymously but attributed to Bernoulli. See Newton [1976a: 303 n 1]Google Scholar
  17. Bernoulli, Johann I [1718] “Remarques sur ce qu'on a donné jusqu'ici de solutions des problèmes sur les isopérimètres” Mém. de l'Acad. Roy. (1718): 100–137 Paris, 1719Google Scholar
  18. Bernoulli, Johann I [1724] “Methodus commoda & naturalis reducendi quadraturas transcendentes cujusvis gradus ad longitudines curvarum algebraïcarum” Acta Erud. (August, 1724): 356–366Google Scholar
  19. Bernoulli, Johann I [1742] “Problema. Aequationes differentiales incompletas cujuscunque gradus reddere completas, hoc est, eas transmutare in alias, in quibus nulla differentialis supponatur constants” Opera omnia IV: 77–79 Lausanne, 1742Google Scholar
  20. Bernoulli, Johann I [1955] Der Briefwechsel von Johann Bernoulli Vol. I, ed. by O. Speiss Basel, 1955Google Scholar
  21. Bernoulli, Nikolaus II [1720] “Responsio ad Cl. Taylori querelas” Acta Erud. (June, 1720): 279–283Google Scholar
  22. Bertrand, J. [1864] Traité de Calcul Différentiel et de Calcul Intégral Part I Paris 1864Google Scholar
  23. Biot, J.-B., & Lefort, F., eds. [1856] Commercium Epistolicum J. Collins et Aliorum de Analysi Promota, etc. Réimprimée sur l'Édition Originale de 1712 avec l'Indication des Variantes de l'Édition de 1722, Complétée par une Collection de Pièces Justificatives et de Documents Paris, 1856Google Scholar
  24. [1974] “Differentials, Higher-Order Differentials and the Derivative in the Leibnizian Calculus” Archive for History of Exact Sciences 14 (1974): 1–90Google Scholar
  25. Bourcharlat, Jean Louis [1828] An Elementary Treatise on the Differential and Integral Calculus, trans. by R. Blakelock Cambridge, 1828Google Scholar
  26. Boyer, Carl B. [1949] The History of the Calculus and its Conceptual Development New York, 1959 Reprint of The Concepts of the Calculus New York, 1949Google Scholar
  27. Boyer, Carl B. [1968] A History of Mathematics New York, 1968Google Scholar
  28. Brewster, David [1855] Memoirs of the Life, Writings and, Discoveries of Sir Isaac Newton 2 vols. Edinburgh, 1855Google Scholar
  29. Burchard, Johann [1721] “Epistola ad Virum Clarissimum BROOCK TAYLOR, J.U.D. & R.S.B. Soc.” Acta Erud. (May, 1721): 195–228Google Scholar
  30. [1977] A Genealogical and Heraldic History of the Commoners of Great Britain and Ireland III: 107–109 Baltimore, 1977 Reprint of the London edition, 1834–1838Google Scholar
  31. Calinger, Ronald, ed. [1982] “Brook Taylor (1685–1731)” Classics of Mathematics pp. 418–422 Oak Park, Illinois, 1982 Contains a reprint of Struik's [1969] annotated translation of pp. 21–23 of the Methodus Google Scholar
  32. Cambridge, University of [1893] Admissions to the College of St. John the Evangelist in the University of Cambridge Parts I, II Cambridge, 1893Google Scholar
  33. Cambridge, University of [1909] The Eagle: A Magazine Supported by Members of St. John's College XXX (1909): 105Google Scholar
  34. Cambridge, University of [1927] Alumni Cantabrigienses: A Biographical List of All Known Students, Graduates and Holders of Office at the University of Cambridge, compiled by John Venn & J. A. Venn Cambridge Part 1, Vol. I, 1922 Part 1, Vol. IV, 1927Google Scholar
  35. Cannon, John T., & Dostrovsky, Sigalia [1981] The Evolution of Dynamics: Vibration Theory from 1687 to 1742, Vol. 6 in the Springer-Verlag series Studies in the History of Mathematics and Physical Sciences New York, 1981Google Scholar
  36. Cantor, Moritz [1898] Vorlesungen über Geschichte der Mathematik Vol. III Leipzig, 1898Google Scholar
  37. [1949] “Taylor, Brook” Dictionary of National Biography 19 (1949): 404–405Google Scholar
  38. Carré, Louis [1700] Méthode pour la Mesure des Surfaces, la Dimension des Solides, Leurs Centres de Pesanteur, de Percussion et D'Oscillation, Par l'Application du Calcul intégral Paris, 1700Google Scholar
  39. Child, J. M. [1920] The Early Mathematical Manuscripts of Leibniz Chicago, 1920Google Scholar
  40. Cohen, I. Bernard [1971] An Introduction to Newton'sPrincipia’ Cambridge, 1971Google Scholar
  41. [1948] “Giovanni Bernoulli e la sfida di Brook Taylor” Archives Internationales d'Histoire des Sciences 1 (1948): 611–622Google Scholar
  42. De Morgan, Augustus [1842] The Differential and Integral Calculus, London 1842Google Scholar
  43. De Morgan, Augustus [1861] “Notes on the History of Perspective” The Athenaeum (Nov. 30, 1861): 727–728Google Scholar
  44. Ditton, Humphrey [1726] An Institution of Fluxions 2nd ed. London, 1726Google Scholar
  45. Dugas, René [1955] A History of Mechanics Neuchatel, 1955Google Scholar
  46. Edleston, J. [1850]* Correspondence of Sir Isaac Newton and Professor Cotes London, 1850Google Scholar
  47. Edwards, C. H., Jr. [1979] The Historical Development of the Calculus New York, 1979Google Scholar
  48. Emerson, William [1763] The Method of Increments London, 1763Google Scholar
  49. Emerson, William [1767] The Arithmetic of Infinites, and the Differential Method London, 1767Google Scholar
  50. [1905] “Kleine Bemerkungen zur zweiten Auflage von Cantor's, ‘Vorlesungen über Geschichte der Mathematik’” Bibliotheca Mathematica 3rd series 6 (1905): 213, 319Google Scholar
  51. [1912] “Zur Vorgeschichte der Entdeckung des Taylorschen Lehrsatzes” Bibliotheca Mathematica 3rd series 12 (1912): 333–336Google Scholar
  52. [1736] “Inventio summae cuiusque seriei ex dato termino generali” Commentarii academiae scientarum Petropolitanae 8 (1736), 1741: 9–22 in Euler, Opera omnia series I 14 (1925): 108–123Google Scholar
  53. Euler, Leonhard [1744] Methodus inveniendi lineas curvas maximi mimimive Proprietate gaudentes sive solutio problematis isoperimetrici latissimo sensu accepti Lausanne, 1744 in Euler, Opera omnia series I Vol. 24 Bern, 1952Google Scholar
  54. Euler, Leonhard [1787] Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrine serierum 2 vols. Pavia, 1787Google Scholar
  55. Feigenbaum, Lenore [1981] Brook Taylor's “Methodus incrementorum”: A Translation with Mathematical and Historical Commentary Dissertation, Yale University, 1981Google Scholar
  56. [1944] “Eine vergessene Disputation zwischen den Mathematikern Brook Taylor (1685–1731) und Rémond de Montmort (1678–1719) über Newtons Gravitationslehre” Verhandlungen der Schweizerischen Naturforschenden Gesellschaft 124 (1944): 189–191Google Scholar
  57. [1949] “Die Taylorsche Formel bei Johann I Bernoulli” Elemente der Mathematik 1 (1949): 13–17Google Scholar
  58. Fontenelle, Bernard le Bovier de [1719] “Eloge de M. de Montmort” Histoire de l'Académie Royale des Sciences (1719): 83–93 Paris, 1721Google Scholar
  59. Gabbey, Alan [1980] “Huygens and Mechanics” in Studies on Christiaan Huygens: Invited Papers from the Symposium on the Life and Work of Christiaan Huygens, Amsterdam, 22–25 August 1979 ed. by Bos, Rudwick, Snelders, & Visser Lisse, Netherlands, 1980 pp. 166–199Google Scholar
  60. Genocchi, Angelo [1889] Differentialrechnung und Grundzüge der Integralrechnung, ed. by Giuseppe Peano Leipzig, 1899 Translation by G. Bohlmann & A. Schepp of Calcolo differenziale Turin, 1884Google Scholar
  61. [1921] “Taylor's Theorem and Bernoulli's Theorem: A Historical Note” Proceedings of the Edinburgh Mathematical Society (1) 39 (1921): 25–33Google Scholar
  62. Goldstine, Herman H. [1980] A History of the Calculus of Variations from the 17th through the 19th Century New York, 1980Google Scholar
  63. Gowing, Ronald [1983] Roger Cotes—natural philosopher Cambridge, 1983Google Scholar
  64. Grabiner, Judith [1966] The Calculus as Algebra: J.-L. Lagrange (1736–1813) Dissertation, Harvard University, 1966Google Scholar
  65. Grattan-Guiness, I. [1970] The Development of the Foundations of Mathematical Analysis from Euler to Riemann Cambridge, Mass., 1970Google Scholar
  66. [1982] “Alexis Fontaine's Integration of Ordinary Differential Equations and the Origins of the Calculus of Several Variables” Annals of Science 39 (1982): 1–36Google Scholar
  67. [1697] “Catenaria” Phil. Trans. 19 (August, 1697): 637–652Google Scholar
  68. Gregory, James [1939] James Gregory Tercentenary Memorial Volume, ed. by Herbert Westren Turnbull London, 1939Google Scholar
  69. Gyles, Fletcher, et al. [1732] A Catalogue of the Libraries of Joseph Hall ... and of Brook Taylor ... which will be sold ... on Tuesday the 22d day of February 1731–2 London, 1732Google Scholar
  70. Hall, A. Rupert [1980] Philosophers at War: The Quarrel between Newton and Leibniz Cambridge, 1980Google Scholar
  71. [1694] “Methodus Nova Accurata & facilis inveniendi Radices Aeqùationum quarumcumque generaliter, sine praevia Reductione” Phil. Trans. 18 (May, 1694): 136–148Google Scholar
  72. [1721] “Some Remarks on the Allowances to be made in Astronomical Observations for the Refraction of the Air” Phil. Trans. 31 (May–August, 1721): 169–172Google Scholar
  73. Hayes, Charles [1704] A Treatise of Fluxions: Or, An Introduction to Mathematical Philosophy London, 1704Google Scholar
  74. Heath, Thomas [1921] A History of Greek Mathematics Vol. II Oxford, 1921Google Scholar
  75. Heilbron, J. L. [1982] Elements of Early Modern Physics Berkeley, 1982Google Scholar
  76. [1983] Physics at the Royal Society during Newton's Presidency University of California, Los Angeles, 1983Google Scholar
  77. Hermann, Jakob [1716] Phoronomia, sive de viribus et motibus corporum solidorum et fluidorum Amsterdam, 1716Google Scholar
  78. Hiscock, W. G., ed. [1937] David Gregory, Isaac Newton and their Circle: Extracts from David Gregory's Memoranda 1677–1708 Oxford, 1937Google Scholar
  79. Hofmann, Joseph Ehrenfried [1956] Ueber Jakob Bernoullis Beiträge zur Infinitesimalmathematik No. 3 in the series Monographies de l'Enseignement Mathématique Geneva, 1956Google Scholar
  80. Hofmann, Joseph Ehrenfried [1959] Classical Mathematics: A Concise History of the Classical Era in Mathematics, trans. by Henrietta O. Midonick New York, 1959 Reprinted Totowa, New Jersey, 1967Google Scholar
  81. Hofmann, Joseph Ehrenfried [1974] Leibniz in Paris 1672–1676: His Growth to Mathematical Maturity London, 1974Google Scholar
  82. [1931] “Die Differenzenrechnung bei Leibniz (mit Zusätzen von D. Mahnke)” Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-Mathematische Klasse 26 (1931): 562–600Google Scholar
  83. Huron, R. [1980] “Un Probabiliste Disciple de Malebranche Pierre Rémond de Montmort (1678–1719)” Centre d'Edition de la Faculté des Sciences de Toulouse 1980Google Scholar
  84. Ince, E. L. [1944] Ordinary Differential Equations Appendix A: 529–539 New York, 1944Google Scholar
  85. [1980] “Taylor, Brook” The New Grove's Dictionary of Music and Musicians 18 (1980): 603–604Google Scholar
  86. Jones, Phillip S. [1947] The Development of the Mathematical Theory of Linear Perspective and its Connections with Projective and Descriptive Geometry with Especial Emphasis on the Contributions of Brook Taylor Dissertation, University of Michigan, 1947Google Scholar
  87. Jones, Phillip S. [1950] “Brook Taylor and the Mathematical Theory of Linear Perspective, his Contributions and Influence” Proceedings of the International Congress of Mathematicians Vol. II, 1950Google Scholar
  88. [1951] “Brook Taylor and the Mathematical Theory of Linear Perspective” American Mathematical Monthly 58 (1951): 597–606. Contains a list of the editions, translations, and extensions of Taylor's Linear Perspective Google Scholar
  89. Jones, Phillip S. [1976] “Taylor, Brook” Dictionary of Scientific Biography XIII (1976): 265–268Google Scholar
  90. Klein, Felix [1924] Elementarmathematik vom Höheren Standpunkte aus 3rd ed. Vol. I Berlin, 1924 Translated by E. R. Hedrick & C. A. Noble as Elementary Mathematics from an Advanced Standpoint New York, 1945Google Scholar
  91. Lacroix, S.-F. [1861] Traité Élémentaire de Calcul Différentiel et de Calcul Intégral 6th ed. 2 vols. Paris, 1861Google Scholar
  92. Lagrange, Joseph Louis [1806] Leçons sur le Calcul des Fonctions 3rd ed. Paris, 1806 in Œuvres de Lagrange Vol. 10 Paris, 1884Google Scholar
  93. [1907] “An Interesting Find” The Mathematical Gazette 4 (1907): 96–98Google Scholar
  94. Leibniz, Gottfried Wilhelm [1693] “Supplementum geometriae practicae sese ad problemata transcendentia extendens, ope novae methodi generalissimae per series infinitas” Acta Erud. (April, 1693): 178–180Google Scholar
  95. [1710] “Symbolismus memorabilis calculi algebraici et infinitesimalis in comparatione potentiarum et differentiarum, et de lege homogeneorum transcendentali” Miscellanea Berolinensia II (1710): 160–165 in Leibniz [1858: 377–382]Google Scholar
  96. Leibniz, Gottfried Wilhelm [1716] “Methodus incrementorum directa & inversa, Autore BROOCK TAYLOR, L.L.D. & Regiae Societatis Secretario” Acta Erud. (July, 1716): 292–296. Published anonymously but attributed to Leibniz. See Auchter [1937: 18 n 29]Google Scholar
  97. Leibniz, Gottfried Wilhelm [1846] Historia et Origo calculi differentialis a G. G. Leibnitzio conscripta, ed. by C. I. Gerhardt Hannover, 1846 in Leibniz [1858: 392–410] Mathematische Schriften 7 vols., ed. by C. I. Gerhardt Berlin and Halle, 1849–1863Google Scholar
  98. Leibniz, Gottfried Wilhelm [1855] Vol. III, Part 1, HalleGoogle Scholar
  99. Leibniz, Gottfried Wilhelm [1856] Vol. III, Part 2, HalleGoogle Scholar
  100. Leibniz, Gottfried Wilhelm [1858] Vol. V, HalleGoogle Scholar
  101. Leslie, John [1842] “Dissertation Fourth; Exhibiting a General View of the Progress of Mathematical and Physical Science, Chiefly during the Eighteenth Century” in The Encyclopaedia Britannica 7th ed. Vol. 1 Edinburgh, 1842 pp. 573–677Google Scholar
  102. L'Huilier, Simon [1787] Exposition élémentaire des principes des calculs supérieurs, qui a remporté le prix proposé par l'Académie Royale des Sciences et Belle-Lettres pour l'année 1786 Berlin, 1787Google Scholar
  103. Lyons, Henry [1944] The Royal Society 1660–1940: A History of its Administration under its Charters Cambridge, 1944Google Scholar
  104. Mach, Ernst [1960] The Science of Mechanics 6th ed., trans. by Thomas J. McCormack La Salle, 1960Google Scholar
  105. Maclaurin, Colin [1742] A Treatise of Fluxions 2 vols. Edinburgh, 1742Google Scholar
  106. Mahnke, Dietrich [1926] “Neue Einblicke in die Entdeckungsgeschichte der Höheren Analysis” Abhandlungen der Preussischen Akademie der Wissenschaften Physikalisch Mathematische Klasse (1926): 1–64Google Scholar
  107. Mahoney, Michael S. [1980] “Christiaan Huygens: The Measurement of Time and of Longitude at Sea” in Studies on Christiaan Huygens pp. 234–270. See Gabbey [1980]Google Scholar
  108. Manuel, Frank [1968] A Portrait of Isaac Newton Cambridge, Mass., 1968Google Scholar
  109. Mayor, J. E. B., ed. [1911] Cambridge under Queen Anne Cambridge, 1911Google Scholar
  110. [1698] “A Method of extracting the Root of an Infinite Equation” Phil. Trans. 20 (May, 1698): 190–193Google Scholar
  111. Moivre, Abraham de [1704] Animadversiones in D. Georgii Cheynaei TRACTATUM DE FLUXIONUM Methodo Inversa London, 1704Google Scholar
  112. Moivre, Abraham de [1718] The Doctrine of Chances London, 1718Google Scholar
  113. Moivre, Abraham de [1730] Miscellanea analytica de seriebus et quadraturis London, 1730Google Scholar
  114. Moivre, Abraham de [1756] The Doctrine of Chances 3rd ed. London, 1756 Reprinted New York, 1967Google Scholar
  115. [1917] “De Seriebus infinitis Tractatus. Pars Prima” Phil. Trans. 30 (July–September, 1717): 633–675 With an Appendix by Taylor. See Taylor [1717b]Google Scholar
  116. [1718] “Dissertation de M. de Montmor, sur les Principes de Physique de M. Descartes, comparez à ceux des Philosophes Anglois” L'Europe Savante 5 (October, 1718) Part 2: 209–294Google Scholar
  117. Montucla, Jean-Etienne [1802] Histoire des Mathématiques Vol. 3 Paris, 1802Google Scholar
  118. More, Louis Trenchard [1934] Isaac Newton: A Biography New York, 1934Google Scholar
  119. [1937] “A Note on Taylor's Theorem” American Mathematical Monthly 44 (1937): 31–33Google Scholar
  120. Mullinger, James Bass [1901] University of Cambridge College Histories: St. John's College London, 1901Google Scholar
  121. Newton Isaac [1687] Philosophiae naturalis principia mathematica London 1687Google Scholar
  122. Newton Isaac [1704] Opticks: Or, A Treatise of the Reflexions, Refractions, Inflexions and Colours of Light. Also Two Treatises of the Species and Magnitude of Curvilinear Figures London, 1704 Tractatus de Quadratura Curvarum appears on pp. 163–210 The Correspondence of Isaac Newton 7 vols. Cambridge, 1959–1977Google Scholar
  123. Newton Isaac [1960] Vol. II, ed. by H. W. Turnbull Google Scholar
  124. Newton Isaac [1975] Vol. V, ed. by A. Rupert Hall & Laura Tilling Google Scholar
  125. Newton Isaac [1976a] Vol. VI, ed. by A. Rupert Hall & Laura Tilling Google Scholar
  126. Newton Isaac [1977] Vol. VII, ed. by A. Rupert Hall & Laura Tilling Google Scholar
  127. Newton Isaac [1964] The Mathematical Works of Isaac Newton, 2 vols. Assembled and with an intro. by Derek T. Whiteside New York Vol. I, 1964 Vol. 2, 1967 The Mathematical Papers of Isaac Newton 8 vols., ed. by D. T. Whiteside Cambridge, 1967–1981Google Scholar
  128. Newton Isaac [1972] Vol. VGoogle Scholar
  129. Newton Isaac [1974] Vol. VIGoogle Scholar
  130. Newton Isaac [1976b] Vol. VIIGoogle Scholar
  131. Newton Isaac [1981] Vol. VIIIGoogle Scholar
  132. Newton Isaac [1971] Mathematical Principles of Natural Philosophy and His System of the World 2 vols., trans. by Andrew Motte in 1729 Revised by Florian Cajori Berkeley, 1971Google Scholar
  133. [1812] Literary Ancedotes of the Eighteenth Century 1 (1812): 171–173Google Scholar
  134. [1831] Illustrations of the Literary History of the Eighteenth Century 6 (1831): 753–755Google Scholar
  135. Nicole, François [1717] “Traité du Calcul des Différences Finies” Mém. de l'Acad. Roy. (1717): 7–21 Paris, 1719Google Scholar
  136. Playfair, John [1842] “Dissertation Third; Exhibiting a General View of the Progress of Mathematical and Physical Science, Since the Revival of Letters in Europe” in The Encyclopaedia Britannica 7th ed. Vol. 1 Edinburgh, 1842 pp. 431–572Google Scholar
  137. [1900] “Zur Geschichte des Taylorschen Lehrsatzes” Bibliotheca Mathematica 3rd series 1 (1900): 433–479Google Scholar
  138. [1826] “Taylor (Brook)” Biographie Universelle 46 (1826): 76–82Google Scholar
  139. Raphson, Joseph [1702] Analysis aequationum universalis London, 1702Google Scholar
  140. Reiff, R. [1889] Geschichte der unendlichen Reihen Tübingen, 1889Google Scholar
  141. [1980] Mathematics in the Enlightenment: A Study of Algebra, 1685–1800 Dissertation, University of California, Berkeley, 1980Google Scholar
  142. Rigaud, Stephen Peter, ed. [1841] Correspondence of Scientific Men of the Seventeenth Century Vol. 1 Oxford, 1841Google Scholar
  143. Royal Society [1840] “The Correspondence of Dr. Brook Taylor, Sec. R.S.” Catalogues of the Miscellaneous Manuscripts and of the Manuscript Letters in the Possession of the Royal Society, pp. 18–19 London, 1840Google Scholar
  144. Saunderson, Nicholas [1756] The Method of Fluxions Applied to a select Number of Useful Problems London, 1756Google Scholar
  145. [1968] “Der Mathematiker Abraham de Moivre (1667–1754)” Archive for History of Exact Sciences 5 (1968): 177–317Google Scholar
  146. Stirling, James [1717] Lineae tertii ordinis Newtonianae Oxford, 1717 in Newton, Isaac, Enumeratio linearum tertii ordinis, Stirling, James, Lineae tertii ordinis Newtonianae Paris, 1797Google Scholar
  147. Stirling, James [1730] The Differential Method London, 1749 Translation by Francis Holliday of the Methodus Differentialis London, 1730Google Scholar
  148. Stone, E. [1730] The Method of Fluxions Both Direct and Inverse: The Former being A Translation from the Celebrated Marquis De L'Hospital's ‘Analyse des Infinements [sic] Petits’ And the Latter Supply'd by the Translator London, 1730Google Scholar
  149. Struik, Dirk J., ed. [1969] A Source Book in Mathematics, 1200–1800 Cambridge, Mass., 1969 pp. 328–333 Contains a facsimile of pp. 22–23 of the Methodus and an annotated translation of Propositions 7 and 8Google Scholar
  150. Stukeley, William [1752] Memoirs of Sir Isaac Newton's Life by William Stukeley, M. D., F.R.S. 1752, ed. by A. Hastings White London, 1936Google Scholar
  151. Suter, Heinrich [1873] Geschichte der Mathematischen Wissenschaften 2nd ed. Zürich, 1873Google Scholar
  152. Taylor, Brook [MI] Methodus incrementorum directa et inversa London, 1715, 1717Google Scholar
  153. Taylor, Brook [1712] “Part of a Letter from Mr. Brook Taylor, F.R.S. to Dr. Hans Sloane R.S. Secr. Concerning the Ascent of Water between two Glass Planes” Phil. Trans. 27 (October–December, 1712): 538Google Scholar
  154. [1713a] “De Inventione Centri Oscillationis” Phil. Trans. 28 (1713): 11–21Google Scholar
  155. [1713a, tr] “Of finding the Centre of Oscillation” Phil. Trans. Abr. 6 (1809): 7–12 Full translation of [1713a]Google Scholar
  156. [1713b] “De motu Nervi tensi” Phil. Trans. 28 (1713): 26–32Google Scholar
  157. [1713b, tr] “Of the Motion of a Tense String” Phil. Trans. Abr. 6 (1809): 14–17 Full translation of [1713b]Google Scholar
  158. Taylor, Brook [1715a] Linear Perspective London, 1715Google Scholar
  159. [1715b] “An Account of an Experiment made by Dr. Brook Taylor assisted by Mr. Hawksbee, in order to discover the Law of the Magnetical Attraction” Phil. Trans. 29 (June–August, 1715): 294–295Google Scholar
  160. [1715c] “Accounts of Books: Linear Perspective, or a New Method of representing justly all manner of Objects, &c. By Brook Taylor, L.L.D. and R.S. Secr. 8 vo. London, 1715” Phil. Trans. 29 (June–August, 1715): 300–304. Published anonymously but attributed to Taylor in Phil. Trans. Abr. 6 (1809): viGoogle Scholar
  161. [1715d] “An Account of a Book entituled Methodus Incrementorum, Auctore Brook Taylor, LL,D. & R.S. Secr.” Phil. Trans. 29 (September–October, 1715): 339–350Google Scholar
  162. [1717a] “An Attempt towards the Improvement of the Method of approximating, in the Extraction of the Roots of Equations in Numbers” Phil. Trans. 30 (April–June, 1717): 610–622Google Scholar
  163. Taylor, Brook [1717b] “Appendix: Quâ methodo diversâ eadem materia tractatur” Appendix to Monmort [1717]Google Scholar
  164. [1717c] “Solutio Problematis à Domno G. G. Leibnitio, Geometris Anglis nuper propositi” Phil. Trans. 30 (October–December, 1717): 695–701Google Scholar
  165. [1717c, tr] “Solution of a Problem, lately proposed by M. Leibnitz to the English Geometricians” Phil. Trans. Abr. 6 (1809): 309–312 Translation of [1717c] with the exception of several lines of the introductionGoogle Scholar
  166. [1718] “Article X. Methodus Incrementorum. Auctore Brook Taylor, L.L.D. & R. S. Secr. Londini, M.DCC. XIV. in 4. pagg. 118” Bibliothèque Angloise ou Histoire Littéraire de la Grande Bretagne, ed. by Michel de la Roche Amsterdam 4 (1718): 523–539, Published anonymously but appears to be by Taylor Google Scholar
  167. [1719a] “Apologia D. Brook Taylor. JVD. & R.S. Soc. contra V. CJ. Bernoullium, Math. Prof. Basileae” Phil. Trans. 30 (March–May, 1719): 955–963Google Scholar
  168. [1719a, tr] “An Apology against M. John Bernoulli, Math. Profes. Basil” Phil. Trans. Abr. 6 (1809): 397–398 Partial translation of [1719a]Google Scholar
  169. [1719b] “Réponse à la Dissertation de M. de Montmor, sur les Principes physiques de M. Descartes comparez à ceux des Philosophes Anglois, inserée dans le Mois d'Octobre 1718. Traduite de l'Angloise de M. Taylor” L'Europe Savante 9 (May, 1719) Part 1: 83–134 La HayeGoogle Scholar
  170. Taylor, Brook [1719c] New Principles of Linear Perspective London, 1719. For a list of further editions, translations, and extensions see Jones [1951: 604–605]Google Scholar
  171. [1721a] “Propositiones aliquot de Projectilium motu Parabolico, Scriptae An. 1710” Phil. Trans. 31 (January–March, 1721): 151–163Google Scholar
  172. [1721a, tr] “Some Propositions concerning the Parabolic Motion of Projectiles, written in 1710” Phil. Trans. Abr. 6 (1809): 510–515. Full translation of [1721a]Google Scholar
  173. [1721b] “Extract of a Letter from Dr. Brook Taylor, F.R.S. to Sir Hans Sloan, dated 25. June, 1714. Giving an Account of some Experiments relating to Magnetism” Phil. Trans. 31 (May–August, 1721): 204–208Google Scholar
  174. Taylor, Brook [1722] “Litterae B. Taylor and J.B.M. Datae Londini die 6 Julii A. MDCCXXII” Acta Erud. (September, 1722): 45Google Scholar
  175. [1723] “An Account of an Experiment, made to ascertain the Proportion of the Expansion of the Liquor in the Thermometer, with Regard to the Degrees of Heat” Phil. Trans. 32 (March–April, 1723): 291Google Scholar
  176. Taylor, Brook Contemplatio Philosophica, see Young [1793]Google Scholar
  177. Taylor, Brook For biographical details see esp. Auchter [1937], Burke [1977], Carlyle [1949], Jones [1976], Prony [1826] and Young [1793]Google Scholar
  178. Truesdell, Clifford [1954] “Rational Fluid Mechanics, 1687–1765” in Euler, Leonhard Opera Omnia, series II, vol. 12, Lausanne, 1954Google Scholar
  179. Truesdell, Clifford [1960] The Rational Mechanics of Flexible or Elastic Bodies: 1638–1788 in Euler, Leonhard Opera Omnia, series II, vol. 11 Zürich, 1960Google Scholar
  180. Truesdell, Clifford [1968] Essays in the History of Mechanics New York, 1968Google Scholar
  181. Tweedie, Charles [1722] James Stirling: A Sketch of his Life and Works along with his Scientific Correspondence Oxford, 1922Google Scholar
  182. Walker, Helene E. [1983] Taylor's Theorem with Remainder: The Legacy of Lagrange, Ampère, and Cauchy Dissertation, New York University, 1983Google Scholar
  183. Wallis, Peter John, & Wallis, Ruth [1977] Newton and Newtoniana 1672–1975 Folkestone, 1977Google Scholar
  184. Weld, Charles Richard [1848] A History of the Royal Society 2 vols. London, 1848Google Scholar
  185. Westfall, Richard S. [1980] Never at Rest: A Biography of Isaac Newton Cambridge, 1980Google Scholar
  186. Whewell, William [1826] An Elementary Treatise on Mechanics 3rd ed. Cambridge, 1826Google Scholar
  187. Whewell, William [1857] History of the Inductive Sciences 3rd ed. Vol. 2 London, 1857Google Scholar
  188. [1961] “Patterns of Mathematical Thought in the Later Seventeenth Century” Archive for History of Exact Sciences 1 (1961): 179–388Google Scholar
  189. [1970] “The Mathematical Principles Underlying Newton's ‘Principia Mathematica’” Journal of the History of Astronomy 1 (1970): 116–138Google Scholar
  190. [1980] “Kepler, Newton and Flamsteed on Refraction Through a ‘Regular Aire’: The Mathematical and the Practical” Centaurus 24 (1980): 288–315Google Scholar
  191. Wieleitner, Heinrich [1911] Geschichte der Mathematik Part II, First Half Leipzig, 1911Google Scholar
  192. [1933] “Der Mathematische Briefwechsel zwischen Johann I Bernoulli und Abraham de Moivre” Verhandlungen der Naturforschenden Gesellschaft in Basel 43 (1933): 151–317Google Scholar
  193. Woodhouse, Robert [1810] A History of the Calculus of Variations in the Eighteenth Century New York Reprint of A Treatise on Isoperimetrical Problems and the Calculus of Variations Cambridge, 1810Google Scholar
  194. Wordsworth, Christopher [1877] Scholae Academicae: Some Account of the Studies at the English Universities in the Eighteenth Century Cambridge, 1877Google Scholar
  195. Young, William [1793] Contemplatio Philosophica: A Posthumous Work of the Late Brook Taylor, L.L.D. F.R.S. Some Time Secretary of the Royal Society. To Which is Prefixed A Life of the Author, By His Grandson Sir William Young, Bart. F.R.S. A.S.S. with an Appendix Containing Sundry original Papers, Letters from the Count Raymond de Montmort, Lord Bolingbroke, Marcilly de Villette, Bernouilli, &c. London, 1793Google Scholar

Copyright information

© Springer-Verlag GmbH & Co. KG 1985

Authors and Affiliations

  • L. Feigenbaum
    • 1
  1. 1.Northeastern UniversityBoston

Personalised recommendations