Advertisement

Archive for History of Exact Sciences

, Volume 32, Issue 2, pp 151–191 | Cite as

J. L. Lagrange's changing approach to the foundations of the calculus of variations

  • Craig Fraser
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1841]: “Mémoire sur les conditions d'intégrabilité des fonctions différentielles”, Journal de l'Ecole polytechnique 17 (1841) pp. 249–275.Google Scholar
  2. [1974]: “Differentials, Higher-Order Differentials and the Derivative in the Leibnizian Calculus”, Archive for History of Exact Sciences 14 (1974) pp. 1–90.Google Scholar
  3. [1739]: “Recherches générales sur le calcul intégral”, Histoire de l'Académie Royale des Sciences avec les Mémoires de Mathématique et de Physique 1739 pp. 425–436.Google Scholar
  4. Condorcet, J. M. Marquis de [1765]: Du Calcul Intégral (Paris, 1765).Google Scholar
  5. Courant, R. & Hilbert, D. [1953]: Methods of Mathematical Physics Volume 1 (Interscience, 1953).Google Scholar
  6. Euler, Leonhard Leonhardi Euleri Opera Omnia Series I Opera Mathematica (Various cities, 1911–1956) Volumes 13 22 24 25. Series IVa Commercium Epistolicum (Basel, 1980) Volume 5. This volume of Series IVa is edited by A. P. Juškevič & R. Taton and contains selected French translations of Latin correspondence as well as valuable detailed notes of information.Google Scholar
  7. [1734]: “De Infinitis Curvis Eiusdem Genesis Seu Methodus Inveniendi Aequationes Pro Infinitis Curvis Eiusdem Generis”, Commentarii academiae scientiarum Petropolitanae 7 (1734/35) 1740 pp. 174–189 = Opera S.I 22 (1936) pp. 36–56.Google Scholar
  8. Euler, Leonhard [1744]: Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes Sive Solutio Problematis Isoperimetrici Latissimo Sensu Accepti (Lausanne, 1744) = Opera S.I 24 (1952), ed., Constantin Carathéodory Google Scholar
  9. [1755]: Letter to Lagrange 6 September 1755 = Opera S.IVa 5 (1980) pp. 375–478 = Œuvres de Lagrange 14 pp. 144–146.Google Scholar
  10. [1756]: Letter to Lagrange 24 April 1756 = Opera S.IVa 5 pp. 386–390 = Œuvres de Lagrange 14 pp. 152–154.Google Scholar
  11. [1764a]: “Elementa Calculi Variationum”, Novi commentarii academiae scientiarum Petropolitanae 10 (1764), 1766 pp. 51–93. = Opera S.I 25 (1952) pp. 141–176.Google Scholar
  12. [1764b]: “Analytica Explicatio Methodi Maximorum et Minimorum”, Novi ... Petropolitanae 10 (1764), 1766 pp. 94–134. = Opera S.I 25 pp. 177–207.Google Scholar
  13. Euler, Leonhard [1770]: “Appendix de Calculo Variationum”, Institutiones Calculi Integralis, Volume 3 (1770) = Opera A.I 13 (1914) pp. 369–469.Google Scholar
  14. [1771]: “Methodus Nova et Facilis Calculum Variationum Tractandi”, Novi ... Petropolitanae 16 (1771), 1772, pp. 35–70 = Opera S.I. 25 pp. 208–235.Google Scholar
  15. [1983]: “J. L. Lagrange's Early Contributions to the Principles and Methods of Mechanics”, Archive for History of Exact Sciences 28 (1983) pp. 197–241.Google Scholar
  16. Goldstein, Herbert [1950]: Classical Mechanics (Addison-Wesley, 1950).Google Scholar
  17. Goldstine, Herman H. [1980]: A History of the Calculus of Variations from the 17th through the 19th Century (Springer-Verlag, 1980).Google Scholar
  18. Grabiner, Judith V. [1981]: The Origins of Cauchy's Rigorous Calculus (M.I.T. Press, 1981).Google Scholar
  19. Huke, Aline [1930]: “An Historical and Critical Study of the Fundamental Lemma in the Calculus of Variations”, Contributions to the Calculus of Variations (University of Chicago Press, 1931) pp. 45–160.Google Scholar
  20. Jordan, Camille [1896]: Cours d'Analyse de l'Ecole Polytechnique, Tome Troisième Calcul Intégral (Paris, 1896).Google Scholar
  21. [1981]: “The History of Differential Forms from Clairaut to Poincaré”, Historia Mathematica 8 (1981) pp. 161–188.Google Scholar
  22. Kline, Morris [1972]: “The Calculus of Variations in the Eighteenth Century”, Mathematical Thought from Ancient to Modern Times (Oxford, 1972) pp. 573–591.Google Scholar
  23. Lagrange, Joseph Louis Œuvres de Lagrange J. A. Serret & G. Darboux, eds., 14 volumes (Paris, 1867–1892). The page references which I give in this article are, with one exception, to the edition of the particular work in question which appears in the Œuvres. (Thus, for example, [1806, 404] refers to page 404 of Œuvres 10.) The one exception is the Méchanique Analitique, for which I have included page numbers to the original edition of 1788 as well as to the edition in the Œuvres. See also the entry below under Méchanique Analitique.Google Scholar
  24. [1754]: Letter to Euler 28 June 1754 = Œuvres 14 (1892) pp. 135–138 = Euler Opera Omnia S.IVa 5 pp. 361–366. (The correspondence between Euler and Lagrange before 1759 was conducted in Latin; after this date it was conducted in French.)Google Scholar
  25. [1755a]: Letter to Euler 12 August 1755 = Œuvres 14 pp. 138–144 = Euler Opera S. IVa 5 pp. 366–375.Google Scholar
  26. [1755b]: Letter to Euler 20 November 1755 = Œuvres 14 pp. 146–151 = Euler Opera S. IVa 5 pp. 378–386.Google Scholar
  27. [1756]: Letter to Euler 5 October 1756 = Euler Opera S. IVa 5 p.p. 396–411. This letter is not in Lagrange's Œuvres 14.Google Scholar
  28. Lagrange, Joseph Louis [1760a]: “Essai d'une nouvelle méthode pour déterminer les maxima et les minima des formules indéfinies”, Miscellanea Taurinensia 2 (1762) = Œuvres 1 (1867) pp. 335–362.Google Scholar
  29. Lagrange, Joseph Louis [1760b]: “Application de la méthode exposée dans le mémoire précédent à la solution de différentes problèmes de dynamique”, Miscellanea Taurinensia 2 (1762) = Œuvres 1 pp. 365–468.Google Scholar
  30. Lagrange, Joseph Louis [1764]: “Recherches sur la libration de la Lune dans lesquelles on tâche de résoudre la Question proposée par l'Académie Royale des Sciences, pour le Prix de l'année 1764”, Prix de l'Académie Royale des Sciences de Paris tome IX 1780 (1777) = Œuvres 6 (1878) pp. 5–61.Google Scholar
  31. Lagrange, Joseph Louis [1780]: “Théorie de la libration de la lune, et des autres phénomènes qui dependent de la figure non sphérique de cette planète”, Nouveaux Memoires de l'Académie royale des Sciences de Berlin 1780 = Œuvres 5 (1870) pp. 5–122.Google Scholar
  32. [1782]: Letter to Laplace 15 September 1782 = Œuvres 14 pp. 115–117.Google Scholar
  33. Lagrange, Joseph Louis [1788]: Méchanique Analitique (Paris, 1788). The second edition of this work appeared in two volumes as the Mécanique Analytique, the first volume in 1811 and the second (posthumously) in 1815. The edition in the Œuvres 11 and 12 (1888) is based on the second edition. Although the second edition differs in many ways from the first, not only in details of presentation but also in scope, the passages of concern in this article remain unchanged except in notation.Google Scholar
  34. Lagrange, Joseph Louis [1797]: Théorie des fonctions analytiques contenant les principles du calcul différentiel dégagés de toute consideration d'infiniment petits ou d'évanouissans de limites ou de fluxions et réduits à l'analyse algébrique des quantités finies, Journal de l'Ecole Polytechnique 3 (1797). Second edition published in 1813 = Œuvres 9 (1881) My references to numbered articles in the Théorie follow the edition of 1797.Google Scholar
  35. Lagrange, Joseph Louis [1806]: Lećons sur le calcul des fonctions (Second edition, 1806) = Œuvres 10 (1884). The lessons on the calculus of variations did not appear in the first edition, published in 1801.Google Scholar
  36. Mach, Ernst [1883]: The Science of Mechanics: A Critical and Historical Account of its Development (Open Court, 1960), The first edition of Mach's book appeared in German in 1883.Google Scholar
  37. Ovaert, Jean-Louis [1976]: “La Thèse de Lagrange et la Transformation de l'Analyse”, Philosophie et Calcul de l'Infini, Christian Houzel et al. (Paris, 1976) pp. 157–200.Google Scholar
  38. [1831]: “Mémoires sur le Calcul des Variations”, Mémoires de l'Académie Royale des Sciences de l'Institut de France Tome XII (Paris, 1833) pp. 223–331.Google Scholar
  39. [1944]: “Lagrange's personality (1736–1813)” Proceedings of the American Philosophical Society 88 (1944) pp. 457–496. I have relied on this source for biographical information concerning Lagrange.Google Scholar
  40. Struik, D. J. [1969]: A Source Book in Mathematics, 1200–1800 (Harvard Press, 1969) pp. 399–413. Selected translations from Euler [1744] and Lagrange [1760a] into English.Google Scholar
  41. Todhunter, Isaac [1861]: A History of the progress of the calculus of variations during the nineteenth century (London, 1861).Google Scholar
  42. Winter, Eduard & Maria [1957]: Die Registres der Berliner Akademie der Wissenschaften 1746–1766 (Berlin, 1957).Google Scholar
  43. Woodhouse, Robert [1810]: A Treatise on Isoperimetrical Problems and the Calculus of Variations (Cambridge, 1810).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Craig Fraser
    • 1
  1. 1.Institute for History & Philosophy of Science & TechnologyUniversity of TorontoCanada

Personalised recommendations