Molecular and General Genetics MGG

, Volume 140, Issue 2, pp 91–100 | Cite as

Effect of different mutaions in ribosomal protein S5 of Escherichia coli on translational fidelity

  • W. Piepersberg
  • A. Böck
  • H. G. Wittmann
Article

Summary

The effect of three different types of mutations in ribosomal protein S5 of Escherichia coli on translational fidelity has been studied. Two of them, namely that conferring resistance to spectinomycin and that selected for partial suppression of a temperaturesensitive alanyl-tRNA synthetase mutation, do not exhibit ribosomal ambiguity in the in vivo and in vitro test system employed. In constrast, mutations in ribosomal protein S5 selected for suppression of streptomycin dependence mutations are able to derestrict the restriction of translational ambiguity imposed by strA mutations, though to different degrees depending on the type of mutation. Mutants in which streptomycin dependence is suppressed by an alteration in protein S5 are more restrictive than mutants resistant to streptomycin. Again, the extent of restriction depends on the type of the strAd allele.

In conclusion: mutations in ribosomal protein S5 can act as ram mutations like mutations in protein S4. The part of the S5 polypeptide involved in control of translational fidelity is different from regions altered in spectinomycin resistant strains and in the alanyl-tRNA synthetase suppressor mutant.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bjare, U., Gorini, L.: Drug dependence reversed by a ribosomal ambiguity mutation, ram, in Escherichia coli. J. molec. Biol. 57, 423 (1971)Google Scholar
  2. Böck, A.: Mutation affecting the charging reaction of alanyl-tRNA synthetase from Escherichia coli K10. Arch. Mikrobiol. 68, 165 (1969)Google Scholar
  3. Breckenridge, L., Gorini, L.: Genetic analysis of streptomycin resistance in Escherichia coli. Genetics 65, 9 (1970)Google Scholar
  4. Buckel, P., Ruffler, D., Piepersberg, W., Böck, A.: RNA overproducing revertants of an alanyl-tRNA synthetase mutant of Escherichia coli. Molec. gen. Genet. 119, 323 (1972)Google Scholar
  5. Davies, J., Nomura, M.: The genetics of bacterial ribosomes. Ann. Rev. Genet. 6, 203 (1972)Google Scholar
  6. Fraenkel, D. G., Neidhardt, F. C.: Use of chloramphenicol to study control of RNA synthesis in bacteria. Biochim. biophys. Acta (Amst.) 53, 96 (1961)Google Scholar
  7. Funatsu, G., Nierhaus, K., Wittmann-Liebold, B.: Ribosomal proteins, XXII. Studies on the altered protein S5 from a spectinomycin-resistant mutant of Escherichia coli. J. molec. Biol. 64, 201 (1972)Google Scholar
  8. Funatsu, G., Schiltz, E., Wittmann, H. G.: Ribosomal proteins XXVII. Localisation of the amino acid exchanges in protein S5 from Escherichia coli mutants resistant to spectinomycin. Molec. gen. Genet. 114, 106 (1971)Google Scholar
  9. Gorini, L.: Ribosomal discrimination of tRNAs. Nature (Lond.) New Biol. 234, 261 (1971)Google Scholar
  10. Gorini, L., Kataja, E.: Phenotypic repair by streptomycin of defective genotypes in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 51, 487 (1964)Google Scholar
  11. Hasenbank, R., Guthrie, C., Stöffler, G., Wittmann, H. G., Rosen, L., Apirion, D.: Electrophoretic and immunological studies on ribosomal proteins of 100 Escherichia coli revertants from streptomycin dependence. Molec. gen. Genet. 127, 1 (1973)Google Scholar
  12. Itoh, T., Wittmann, H. G.: Amino acid replacements in protein S5 and S12 of two Escherichia coli revertants from streptomycin dependence to independence. Molec. gen. Genet. 127, 19 (1973)Google Scholar
  13. Jacoby, G. A., Gorini, L.: Genetics of control of the arginine pathway in Escherichia coli B and K. J. molec. Biol. 24, 41 (1967)Google Scholar
  14. Kreider, G., Brownstein, B. L.: Ribosomal proteins involved in the suppression of streptomycin dependence in Escherichia coli. J. Bact. 109, 780 (1972)Google Scholar
  15. Kuwano, M., Endo, H., Ohnishi, Y.: Mutations to spectinomycin resistance which alleviate the restriction of an amber suppressor by streptomycin resistance. J. Bact. 97, 940 (1969)Google Scholar
  16. Leboy, P. S., Cox, E. C., Flaks, J. G.: The chromosomal site specifying a ribosomal protein in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 52, 1367 (1964)Google Scholar
  17. Miller, J. H.: Experiments in molecular genetics. Cold Spring Harbor Laboratory (1972)Google Scholar
  18. Pongs, O., Nierhaus, K. H., Erdmann, V. A., Wittmann, H. G.: Active sites in Escherichia coli ribosomes. FEBS Lett. 40, Suppl. 28 (1974)Google Scholar
  19. Rosset, R., Gorini, L.: A ribosomal ambiguity mutation. J. molec. Biol. 39, 95 (1969)Google Scholar
  20. Stöffler, G., Deusser, E., Wittmann, H. G., Apirion, D.: Ribosomal proteins XIX. Altered S5 ribosomal proteins in an Escherichia coli revertant from streptomycin dependence to independence. Molec. gen. Genet. 111, 334 (1971)Google Scholar
  21. Taylor, A., Trotter, C. D.: Linkage map of Escherichia coli strain K12. Bact. Rev. 36, 504 (1972)Google Scholar
  22. Tyler, B., Ingraham, J. L.: Studies on ribosomal mutants of Salmonella typhimurium LT-2. Molec. gen. Genet. 122, 197 (1973)Google Scholar
  23. Wittmann, H. G., Stöffler, G., Piepersberg, W., Buckel, P., Ruffler, D., Böck, A.: Altered S5 and S20 ribosomal proteins in revertants of an alanyl-tRNA synthetase mutant of Escherichia coli. Molec. gen. Genet. 134, 225 (1974)Google Scholar
  24. Wittmann-Liebold, B., Wittmann, H. G.: Ribosomal proteins XX. Isolation and analyses of the tryptic peptides of proteins S5 from strain K and B of Escherichia coli. Biochim. biophys. Acta (Amst.) 251, 44 (1971)Google Scholar
  25. Zimmermann, R. A., Garvin, R. T., Gorini, L.: Alteration of a 30s ribosomal protein accompanying the ram mutation in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 68, 2263 (1971)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • W. Piepersberg
    • 1
    • 2
  • A. Böck
    • 1
    • 2
  • H. G. Wittmann
    • 1
    • 2
  1. 1.Lehrstuhl für Mikrobiologie der Universität RegensburgRegensburgGermany
  2. 2.Max-Planck-Institut für Molekulare GenetikBerlin-Dahlem

Personalised recommendations