Oecologia

, Volume 106, Issue 4, pp 516–524

Present dynamics of the savanna-forest boundary in the Congolese Mayombe: a pedological, botanical and isotopic (13C and 14C) study

  • D. Schwartz
  • H. de Foresta
  • A. Mariotti
  • J. Balesdent
  • J. P. Massimba
  • C. Girardin
Article
  • 134 Downloads

Abstract

Isolated savannas enclosed by forest are especially abundant in the eastern part of the Congolese Mayombe. They are about 3000 years old, and were more extensive some centuries ago. The boundary between forest and savanna is very abrupt, as a consequence of the numerous savanna fires lit by hunters. Floristic composition and vegetation structure data, organic carbon ratios, Δ14C and δ13C measurements presented here show that forest is spreading over savanna at the present time and suggest that the rate of forest encroachment is is currently between 14 and 75 m per century, and more probably about 20–50 m per century. As most savannas are less than 1 km across, such rates mean, assuming there are no changes in environmental conditions, that enclosed savannas could completely disappear in the Mayombe in about 1000–2000 years.

Key words

Congo Forest-savanna dynamics 13C natural abundance Forest encroachment Pioneer trees 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balesdent J, Guillet B (1982) Les datations par le 14C des matières organiques du sol. Contribution à l'étude de l'humification et du renouvellement des substances organiques. Sci Sol 2:93–112Google Scholar
  2. Balesdent J, Mariotti A, Guillet B (1987) Natural 13C abundance as a tracer for studies of soil organic matter dynamics. Soil Biol Biochem 19:25–30Google Scholar
  3. Bender MM (1971) Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10:1239–1244Google Scholar
  4. Benner R, Fogel ML, Sprague EK, Hodson RE (1987) Depletion in 13C lignin and its implications for stable isotope studies. Nature 329:708–710Google Scholar
  5. Blair N, Leu A, Munoz E, Olsen J, Kwong E, Des Marais D (1985) Carbon isotope fractionation in heterotrophic microbial metabolism. Appl Environ Microbiol 50:996–1001Google Scholar
  6. Clairac B, Cros B, Senechal J (1989) Le climat du Mayombe. In: Revue des connaissances sur le Mayombe. PNUD, MAB, UNESCO, Paris, pp 47–68Google Scholar
  7. Cusset G (1989) La flore et la végétation du Mayombe congolais. Etat des connaissances. In: Revue des connaissances sur le Mayombe. PNUD, MAB, UNESCO, Paris, pp 103–136Google Scholar
  8. Dechamps R, Guillet B, Schwartz D (1988) Découverte d'une flore forestière mi-Holocène (5800–3100 B.P.) conservée in situ sur le littoral ponténégrin (R.P. du Congo). CR Acad Sci Paris Ser II 306:615–618Google Scholar
  9. Dzurec RS, Boutton TW, Caldwell MM, Smith BN (1985) Carbon isotope ratios of soil organic matter and their use in assessing community composition change in Curlew Valley, Utah. Oecologia 66:17–24Google Scholar
  10. Elenga H, Schwartz D, Vincens A (1992) Changements climitiques et action anthropique sur le littoral congolais au cours de l'Holocène. Bull Soc Geol Fr 163:83–90Google Scholar
  11. FAO (1976) Carte mondiale des sols, vol VI. Afrique. FAO, RomeGoogle Scholar
  12. Flexor JM, Volkoff B (1977) Distribution de l'isotope stable 13C dans la matière organique d'un sol ferrallitique de l'Etat de Bahia (Brésil). CR Acad Sci Paris Ser D 284:1655–1657Google Scholar
  13. Foresta H de (1990) Origine et évolution des savanes intramayombiennes (RP du Congo). II. Apports de la botanique forestière. In: Lanfranchi R, Schwartz D (eds) Paysages quaternaires de l'Afrique Centrale atlantique. ORSTOM, Paris, pp 326–335Google Scholar
  14. Gibert G, Senechal J (1989) L'économie forestière. In: Revue des connaissances sur le Mayombe. PNUD, MAB, UNESCO, Paris, pp 249–293Google Scholar
  15. Girardin C, Mariotti A (1991) Analyse isotopique du 13C en abondance naturelle dans le carbone organique: un système automatique avec robot préparateur. Cah ORSTOM Ser Pedol 26:371–380Google Scholar
  16. Goh KM, Rafter TA, Stout JD, Walker TW (1976) The accumulation of soil organic matter and its carbon isotope content in a chronosequence of soils developed on aeolian sand in New Zealand. J Soil Sci 27:89–100Google Scholar
  17. Goh KM, Stout JD, Rafter TA (1977) Radiocarbon enrichment of soil organic matter fractions in New Zealand soils. Soil Sci 123:385–391Google Scholar
  18. Gras F (1970) Surfaces d'aplanissement et remaniement des sols sur la bordure orientale du Mayombe. Cah ORSTOM Ser Pedol 8:274–294Google Scholar
  19. Kaplan IR, Rittenberg SC (1964) Carbon isotope fractionation during metabolism of lactate by Desulfovibrio desulfuricans. J Gen Microbiol 34:213–217Google Scholar
  20. Kapos V, Ganade G, Matsui E, Victoria RL (1993) δ13C as an indicator of edge effects in tropical rainforest reserves. J Ecol 81:425–432Google Scholar
  21. Marino BD, McElroy MB (1991) Isotopic composition of atmospheric CO2 inferred from carbon in C4 plant cellulose. Nature 349:127–131Google Scholar
  22. Mariotti A (1991) Le carbone 13 en abondance naturelle, traceur de la dynamique de la matière organique des sols et de l'évolution des paléoenvironnements continentaux. Cah ORSTOM Ser Pedol 26:299–313Google Scholar
  23. Mariotti A, Balesdent J (1990) 13C natural abundance as a tracer of soil organic matter turnover and paleoenvironment dynamics. Chem Geol 84:217–219Google Scholar
  24. Mariotti A, Peterschmitt E (1994) Forest savanna ecotone dynamics in India as revealed by carbon isotope ratios of soil organic matter. Oecologia 97:475–480Google Scholar
  25. Martin A, Mariotti A, Balesdent J, Lavelle P, Vuattoux R (1990) Estimate of organic matter turn-over rate in a savanna soil by 13C natural abundance measurements. Soil Biol Biochem 22:517–523Google Scholar
  26. Massimba JP (1987) Etude descriptive d'une forêt à Marantaceae/Zingiberaceae dans le Mayombe congolais. DEA, University of Paris VIGoogle Scholar
  27. Nadelhoffer KJ, Fry B (1988) Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Sci Soc Am J 52:1633–1640Google Scholar
  28. Nissenbaum A, Schallinger KM (1974) The distribution of the stable carbon isotope (13C/12C) in fractions of soil organic matter. Geoderma 11:137–145Google Scholar
  29. O'Brien BJ, Stout JD (1978) Movement and turnover of soil organic matter as indicated by carbon isotope measurements. Soil Biol Biochem 10:309–317Google Scholar
  30. Petit M (1990) Géographie physique tropicale. Karthala-ACCT, ParisGoogle Scholar
  31. Rat Patron P, Schwartz D (1996) Les savanes incluses du Máyombe. I. Description et localisation. In: Reversat F, Schwartz D (eds) Milieux et activités agricoles dans le Mayombe congolais. UNESCO, Paris (in press)Google Scholar
  32. Schwartz D (1988) Histoire d'un paysage: le lousseke. Paléoenvironnements quaternaires et podzolisation sur sables Bateke (quarante derniers millénaires, région de Brazzaville, RP du Congo). ORSTOM, ParisGoogle Scholar
  33. Schwartz D (1991) Intérêt de la mesure du δ13C des sols en milieu naturel équatorial pour la connaissance des aspects pédologiques et écologiques des relations savane-forêt. Cah ORSTOM Ser Pedol 26:327–341Google Scholar
  34. Schwartz D (1992) Assèchement climatique vers 3000 BP et expansion bantu en Afrique Centrale atlantique: quelques réflexions. Bull Soc Geol Fr 163:353–361Google Scholar
  35. Schwartz D, Mariotti A, Lanfranchi R, Guillet B (1986) 13C/12C ratios of soil organic matter as indicators of vegetation changes in the Congo. Geoderma 39:97–103Google Scholar
  36. Schwartz D, Foresta H de, Dechamps R, Lanfranchi R (1990a) Découverte d'un premier site de l'Age du fer ancien (2110 BP) dans le Mayombe congolais. Implications paléobotaniques et pédologiques. CR Acad Sci Paris Ser II 310:1293–1298Google Scholar
  37. Schwartz D, Lanfranchi R, Mariotti A (1990b) Origine et évolution des savanes intramayombiennes (RP du Congo). I. Apports de la pédologie et de la biogéochimie isotopique (14C et 13C). In: Lanfranchi R, Schwartz D (eds) Paysages quaternaires de l'Afrique Centrale atlantique. ORSTOM, Paris, pp 314–325Google Scholar
  38. Schwartz D, Mariotti A, Trouvé C, Van Den Borg K, Guillet B (1992) Etude des profils isotopiques 13C et 14C d'un sol ferrallitique sableux du littoral congolais. Implications sur la dynamique de la matière organique et l'histoire de la végétation. CR Acad Sci Paris Ser II 315:1411–1417Google Scholar
  39. Smith BN, Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiol 47:380–384Google Scholar
  40. Troughton JH, Wells PV, Mooney HA (1974) Photosynthetic mechanisms and paleoecology from carbon isotope ratios in ancient specimens of C4 and CAM plants. Science 185:610–612Google Scholar
  41. Tsakala R (1988) Etude de la variabilité spatiale des caractéristiques analytiques du sol de deux parcelles sous forêt et sous bananiers dans le Mayombe. Mem Dipl Ing Develop Rural, ORSTOM Pointe Noire and IDR, BrazzavilleGoogle Scholar
  42. Vennetier P (1968) Pointe Noire et la façade maritime du Congo. Mémoire no 26. ORSTOM, ParisGoogle Scholar
  43. Vincens A, Buchet G, Elenga H, Fournier M, Martin L, Namur C de, Schwartz D, Servant M, Wirrmann D (1994) Un changement majeur de végétation autour du lac Sinnda (vallée du Niari, sud-Congo) lié à un assèchement climatique intra-Holocène. Apport de la palynologie. CR Acad Sci Paris Ser II 318:1521–1526Google Scholar
  44. Volkoff B, Cerri CC (1987) Carbon isotopic fractionation in subtropical Brazilian grassland soils. Comparison with tropical forest soils. Plant Soil 102:27–31Google Scholar
  45. Walkley A, Black A (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chronic acid titration method. Soil Sci 37:29–38Google Scholar
  46. White F (1983) The vegetation of Africa. UNESCO/AETFAT/UNSO, ParisGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • D. Schwartz
    • 1
  • H. de Foresta
    • 1
  • A. Mariotti
    • 2
  • J. Balesdent
    • 2
  • J. P. Massimba
    • 1
  • C. Girardin
    • 2
  1. 1.ORSTOMPointe NoireCongo
  2. 2.Biogéochimie IsotopiqueUniversité P et M. Curie-INRAParis 5France
  3. 3.CEREGStrasbourgFrance
  4. 4.ICRAFBogorIndonesia

Personalised recommendations