Chromosoma

, Volume 24, Issue 1, pp 100–134 | Cite as

Chromosome patterns and nuclear phenomena in the cycad families Stangeriaceae and Zamiaceae

  • C. J. Marchant
Article

Abstract

The chromosome karyotypes are described and scale diagrams prepared of 35 species representing 8 genera of the “cycad” families Stangeriaceae and Zamiaceae. The karyotype patterns, chromosome types and characteristics of the nucleolar organisers and heterochromatin are discussed in relation to their evolution in this ancient group of plants. A possible path of chromosome evolution is suggested by the concurrence in some genera of terminal heterochromatic knobs on chromosome arms and a single pair of telocentric homologues which in the remaining genera are replaced by complex partially heterochromatic nucleolar-organising chromosomes. — It is suggested that telocentric chromosomes may be of ancient origin in the cycads and that there may have been a progression from telocentric to mesocentric karyotypes. The paucity of genera today and the taxonomic isolation of the cycads from the remainder of the present-day flora renders impossible the corroboration of this theory by direct cytological comparisons with other groups.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, A., and P. M. Mathew: Cytology of Encephalartos hildebrandtii A. Br. et Bouche. Ann. Bot., N.S. 30, 239–241 (1966).Google Scholar
  2. Beal, J. M.: Microsporogenesis and chromosome behaviour in Nothoscordum bivalve. Bot. Gaz. 93, 278–295 (1932).Google Scholar
  3. Caldwell, O. W.: Microcycas calocoma. Contributions from the Hull Botanical Laboratory XCVII. Bot. Gaz. 44, 118–141 (1907).Google Scholar
  4. Chamberlain, C. J.: Hybrids in cycads. Bot. Gaz. 81, 401–418 (1926).Google Scholar
  5. —: Gymnosperms. Structure and evolution. Chicago: Chicago University Press 1935.Google Scholar
  6. Cleveland, L. R.: The whole life cycle of chromosomes and their coiling systems. Trans. Amer. phil. Soc. 39, 1–100 (1949).Google Scholar
  7. Darlington, C. D.: Misdivision and the genetics of the centromere. J. Genet. 37, 341–364 (1939).Google Scholar
  8. —: Chromosome botany. London: Allen & Unwin 1956.Google Scholar
  9. —, and L. F. La Cour: Differential reactivity of the chromosomes. Ann. Bot., N.S. 2, 615–625 (1940).Google Scholar
  10. —: Hybridity selection in Campanula. Heredity 4, 217–248 (1950).Google Scholar
  11. Dyer, A. F.: Allocyclic segments of chromosomes and the structural heterozygosity that they reveal. Chromosoma (Berl.) 13, 545–576 (1963).Google Scholar
  12. Hair, J. B., and E. J. Beuzenberg: Chromosomal evolution of the Podocarpaceae. Nature (Lond.) 181, 1584–1586 (1958).Google Scholar
  13. Jain, H. K.: The effect of high temperature on meiosis in Lolium. Heredity 11, 23–36 (1957).Google Scholar
  14. John, B., and G. M. Hewitt: Karyotype stability and DNA variability in the Acrididae. Chromosoma (Berl.) 20, 155–172 (1966).Google Scholar
  15. -, and K. R. Lewis: The meiotic system. Protoplasmatalogia VI F/1, 1–335 (1965).Google Scholar
  16. Johnson, L. A. S.: The families of cycads and the Zamiaceae of Australia. Proc. Linn. Soc. N.S.W. 84, 64–177 (1959).Google Scholar
  17. —: Cytological and taxonomic notes on Zamiaceae. Contr. from the New South Wales Nat. Herb. 3 (4), 235–240 (1963).Google Scholar
  18. Jones, K., and C. Colden: The telocentric complement of Tradescantia micrantha. Chromosoma (Berl.) 24 (in the press. 1968).Google Scholar
  19. Khoshoo, T. N.: Chromosome numbers in Gymnosperms. Silv. Genet. 10, 1–9 (1961).Google Scholar
  20. - Cytogenetical evolution in the Gymnosperms — Karyotype. Proc. Summer School of Botany, Darjeeling, 119–135 (1962).Google Scholar
  21. —, and M. R. Ahuja: The chromosomes and relationships of Welwitschia mirabilis. Chromosoma (Berl.) 14, 522–533 (1963).Google Scholar
  22. La Cour, L. F.: Heterochromatin and the organisation of nucleoli in plants. Heredity 5, 37–50 (1951).Google Scholar
  23. Marks, G. E.: The cytology of Oxalis dispar. Chromosoma (Berl.) 8, 650–750 (1957a).Google Scholar
  24. —: Telocentric chromosomes. Amer. Naturalist 91, 223–232 (1957b).Google Scholar
  25. Maude, P. F.: Chromosome numbers in some British plants. New Phytologist 39, 17–32 (1940).Google Scholar
  26. Melander, Y.: Studies in the chromosomes of Ulophysema oresundense. Hereditas (Lund) 36, 233–255 (1950).Google Scholar
  27. Morrison, J. W.: Chromosome interchange by misdivision in Triticum. Canad. J. Bot. 32, 281–284 (1954).Google Scholar
  28. Nakamura, T.: Chromosome arrangement. 9. The pollen mother cells in Cycas revoluta Thunb. Mem. Coll. Sci. Kyoto Imp. Univ., Ser. B 4, 353–369 (1929).Google Scholar
  29. Norstog, K.: In research report. Bulletin of the Fairchild Tropical Garden, April 1966.Google Scholar
  30. Pollock, E. G.: The sex chromosomes of the maidenhair tree. J. Hered. 48, 290–294 (1957).Google Scholar
  31. Resende, F.: Über die Chromosomenstruktur in der Mitose der Wurzelspitzen II. Sat-Differenzierungen, Spiralbau und Chromonemata. Chromosoma (Berl.) 1, 486–520 (1939).Google Scholar
  32. —, and L. Rijo: Structure of chromosomes as observed in root tips v. Olistherochromatin, chromatic agglutination and mutations. Port. Acta biol. 2, 117–147 (1948).Google Scholar
  33. Sax, K., and J. M. Beal: Chromosomes of the Cycadales. J. Arnold Arboretum 15, 255–258 (1934).Google Scholar
  34. Sears, E. R.: The behavior of isochromosomes and telocentrics in wheat. Chromosoma (Berl.) 4, 551–562 (1952).Google Scholar
  35. Vaarama, A.: Cytological observations on Pleurozium schreberi, with special reference to centromere evolution. Ann. Bot. Soc. Vanamo 28, 1–59 (1954).Google Scholar
  36. Viveiros, A.: Aglutinação, olisterocromatina, heterocromatina e determinismo do sexo nas Cycadales. Rev. Fac. Ciénc. Univ. Lisboa, sér. 2 C, 1, 215–278 (1951).Google Scholar
  37. White, M. J. D.: Animal cytology and evolution, 2nd ed. Cambridge: Cambridge Univ. Press 1954.Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • C. J. Marchant
    • 1
  1. 1.Jodrell LaboratoryRoyal Botanic GardensKew

Personalised recommendations