, Volume 104, Issue 2, pp 259–264 | Cite as

Assortative pairing in Gammarus insensibilis (Amphipoda) infected by a trematode parasite

  • F. Thomas
  • F. Renaud
  • J. M. Derothe
  • A. Lambert
  • T. De Meeüs
  • F. Cézilly
Original Paper


We have investigated the influence of Microphallus papillorobustus (Trematoda) on the reproductive biology and mating patterns of its intermediate host Gammarus insensibilis (Amphipoda). Infected Gammarus species show altered behaviour which renders them more susceptible to predation by Charadriiform birds, the parasite's definitive hosts. In a natural population of G. insensibilis, mean parasite intensity was higher for unpaired individuals than for paired individuals. Fecundity was reduced in infected amphipods. Size-assortative pairing was significant, although infected males were found with smaller females compared to uninfected males of the same size. There was also a positive assortative pairing by parasitic prevalence. Vertical segregation between infected and uninfected individuals, male-male competition for access to uninfected females, and female choice may explain assortative mating for prevalence. This study provides the first empirical evidence that parasites can have a direct effect on patterns of mating in gammarids.

Key words

Parasitism Host reproductive success Gammarus insensibilis Microphallus papillorobustus Trematode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams J, Greenwood PJ (1983) Why are males bigger than females in pre-copula pairs of Gammarus pulex? Behav Ecol Sociobiol 13: 239–241Google Scholar
  2. Adams J, Greenwood PJ (1987) Loading constraints, sexual selection and assortative mating in peracarid Crustacea. J Zool Lond 211: 35–46Google Scholar
  3. Baudouin M (1975) Host castration as a parasitic strategy. Evolution 29: 335–352Google Scholar
  4. Birkhead TR, Clarkson K (1980) Mate selection and precopulatory guarding in Gammarus pulex. Z Tierpsychol 52: 365–380Google Scholar
  5. Borgia G (1986) Satin bowerbird parasites: a test of the bright male hypothesis. Behav Ecol Sociobiol 19: 355–358Google Scholar
  6. Borgia G, Collis K (1989) Female choice for parasite-free male satin bowerbirds and the evolution of bright male plumage. Behav Ecol Sociobiol 25: 445–454Google Scholar
  7. Brown AF, Pascoe D (1989) Parasitism and host sensitivity to cadmium: an acantocephalan infection of the freshwater amphipod Gammarus pulex. J Appl Ecol 26: 473–487Google Scholar
  8. Brun B (1971) Variations intraspécifiques et spéciation chez deux espèces de gammares d'eau saumâtre du groupe Gammarus locusta (Crustacés, Amphipodes). Doctoral thesis, Université de Provence, MarseilleGoogle Scholar
  9. Crespi BJ (1989) Causes of assortative mating in arthropods. Anim Behav 38: 980–1000Google Scholar
  10. Elwood R, Gibson J, Neil S (1987) The amorous Gammarus: size assortative mating in G. pulex. Anim Behav 35: 1–6Google Scholar
  11. Festa-Bianchet M (1988) Nursing behaviour of bighorn sheep: correlates of ewe age, parasitism, lamb age, birthdate and sex. Anim Behav 36: 1445–1454Google Scholar
  12. Forbes MRL (1991) Ectoparasites and mating success of male Enallagma ebrium damselflies (Odonata: Coenagrionidae). Oikos 60: 336–342Google Scholar
  13. Greenwood PJ, Adams J (1984) Sexual dimorphism in Gammarus pulex: the effect of current flow on pre-copula pair formation. Freshwat Biol 14: 203–209Google Scholar
  14. Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites. Science 218: 384–387Google Scholar
  15. Hartnoll RG, Smith SM (1978) Pair formation and the reproductive cycle in Gammarus duebeni. J Nat Hist 12: 501–511Google Scholar
  16. Helluy S (1983) Un mode de favorisation de la transmission parasitaire: la manipulation du comportement de l'hôte intermédiaire. Rev Ecol Terre Vie 38: 211–223Google Scholar
  17. Helluy S (1984) Relations hôtes-parasites du trématode Microphallus papillorobustus (Rankin, 1940). III Facteurs impliqués dans les modifications du comportement des Gammarus hôtes intermédiaires et tests de predation. Ann Parasitol Hum Comp 59: 41–56Google Scholar
  18. Houde AE, Torio AJ (1992) Effect of parasitic infection on male color pattern and female choice in guppies. Behav Ecol 3: 346–351Google Scholar
  19. Howard RD, Minchella DJ (1990) Parasitism and mate competition. Oikos 58: 120–122Google Scholar
  20. Hynes HBN (1954) The ecology of Gammarus duebeni Lilljeborg and its occurrence in freshwater in western Britain. J Anim Ecol 23: 38–84Google Scholar
  21. Hynes HBN (1955) The reproductive cycle of some British freshwater Gammaridae. J Anim Ecol 24: 352–387Google Scholar
  22. Kusano H, Kusano T (1989) Size assortative mating and sexual dimorphism in gammaridean Amphipoda. Jap J Ecol 39: 147–161Google Scholar
  23. Margolis L, Esch GW, Holmes JC, Kuris AM, Schad GA (1982) The use of ecological terms in parasitology (report of an ad hoc committee of the American Society of Parasitologists). J Parasitol 68: 131–133Google Scholar
  24. Minchella DJ, Scott ME (1991) Parasitism: a cryptic determinant of animal community structure. Trends Ecol Evol 6: 250–254Google Scholar
  25. Møller AP (1990) Parasites and sexual selection: current status of the Hamilton and Zuk hypothesis. J Evol Biol 3: 319–328Google Scholar
  26. Moore JK (1981) The ecology of the acanthocephalan (Plagiorhynchus cylindraceus) in the isopod (Armadillidium vulgare) and the starling (Sturnus vulgaris). PhD thesis, University of New-Mexico, AlbuquerqueGoogle Scholar
  27. Poulton MJ, Thompson DJ (1987) The effects of the acanthocephalan parasite Pomphorhynchus laevis on mate choice in Gammarus pulex. Anim Behav 35: 1577–1578Google Scholar
  28. Pringle S (1982) Factors affecting the microdistribution of different sizes of the amphipod Gammarus pulex. Oikos 38: 369–373Google Scholar
  29. Reinhard EG (1956) Parasitic castration of Crustacea. Exp Parasitol 5: 79–107Google Scholar
  30. Rumpus AE, Kennedy CR (1974) The effect of the acanthocephalan Pomphorhynchus laevis upon the respiration of its intermediate host, Gammarus pulex. Parasitology 68: 271–284Google Scholar
  31. Schall JJ, Dearing MD (1987) Malarial parasitism and male competition for mates in the western fence lizard, Sceloporus occidentalis. Oecologia 73: 389–392Google Scholar
  32. Siegel S, Castellan NJ (1988) Nonparametric statistics for the behavioural sciences, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  33. Sokal RR, Rohlf FJ (1981) Biometry, 2nd edn. Freeman, New YorkGoogle Scholar
  34. Stark GTC (1965) Diplocotyle (Eucestoda), a parasite of Gammarus zaddachi in the estuary of the Yorkshire Esk, Britain. Parasitology 55: 415–420Google Scholar
  35. Sutcliffe DW (1992) Reproduction in Gammarus (Crustacea: Amphipoda): basic reproductive processes. Freshwat Forum 2: 102–128Google Scholar
  36. Sutcliffe DW (1993) Reproduction in Gammarus (Crustacea: Amphipoda): male strategies. Freshwat Forum 3: 97–109Google Scholar
  37. Thompson DJ, Moule SJ (1983) Substrate selection and assortative mating in G. pulex. Hydrobiologia 99: 3–6Google Scholar
  38. Ward PI (1983) Advantages and a disadvantage of large size for male Gammarus pulex (Crustacea Amphipoda). Behav Ecol Sociobiol 14: 69–76Google Scholar
  39. Ward PI (1984) The effects of size on the mating decisions of Gammarus pulex (Crustacea Amphipoda). Z Tierpsychol 64: 174–184Google Scholar
  40. Ward PI (1985) The breeding behaviour of Gammarus duebeni. Hydrobiologia 121: 45–50Google Scholar
  41. Ward PI (1986) A comparative field study of the breeding behaviour of a stream and a pond population of Gammarus pulex (Amphipoda). Oikos 46: 29–36Google Scholar
  42. Ward PI (1988) Sexual selection, natural selection and body size in Gammarus pulex (Amphipoda). Am Nat 131: 348–359Google Scholar
  43. Ward PI, Porter AH (1993) The relative roles of habitat structure and male-male competition in the mating system of Gammarus pulex (Crustacea; Amphipoda): a simulation study. Anim Behav 45: 119–133Google Scholar
  44. Zuk M (1987) The effects of gregarine parasites, body size, and time of day on spermatophore production and sexual selection in field crickets. Behav Ecol Sociobiol 21: 65–72Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • F. Thomas
    • 1
  • F. Renaud
    • 1
  • J. M. Derothe
    • 1
  • A. Lambert
    • 1
  • T. De Meeüs
    • 1
  • F. Cézilly
    • 2
  1. 1.Laboratoire de Parasitologie Comparée (URA 698, CNRS)Université Montpellier IIMontpellier, Cedex 05France
  2. 2.Station Biologique de la Tour du ValatArlesFrance

Personalised recommendations