, Volume 66, Issue 4, pp 361–388

Chromosome banding in Amphibia

I. Constitutive heterochromatin and nucleolus organizer regions in Bufo and Hyla
  • M. Schmid


The distribution and quantity of constitutive heterochromatin and of the nucleolus organizer regions (NORs) on the chromosomes of 22 species of bufonids and hylids (Amphibia, Anura) was investigated. Three different kinds of constitutive heterochromatin were found and the frequency of brightly fluorescing heterochromatic regions was remarkably high. On almost all chromosomes there is centric and telomeric heterochromatin. Quantitative estimates of heterochromatin demonstrate that large DNA differences among closely related species can not be attributed to differing quantities of constitutive heterochromatin. In all species investigated, only one homologous pair of NORs was found, which lies preferentially in the proximal and interstitial segments of the long chromosome arms. The NORs are always associated with constitutive heterochromatin on both sides. The size variability between homologous NORs is very high. In the euchromatic regions of the metaphase chromosomes, neither Q- nor G-bands can be demonstrated; this can be attributed to an extremely strong contraction of the anuran chromosomes. On the basis of these results various mechanism of the chromosomal evolution in Anura are discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arrighi, F.E., Hsu, T.C., Pathak, S., Sawada, H.: The sex chromosomes of the Chinese hamster: constitutive heterochromatin deficient in repetitive DNA sequences. Cytogenet. Cell Genet. 13, 268–274 (1974)Google Scholar
  2. Bachmann, K.: Specific nuclear DNA amounts in toads of the genus Bufo. Chromosoma (Berl.) 29, 365–374 (1970)Google Scholar
  3. Bachmann, K.: Genome size in mammals. Chromosoma (Berl.) 37, 85–93 (1972)Google Scholar
  4. Bailly, S.: Localisation et signification des zones Q observeés sur les chromosomes mitotiques de l'amphibien Pleurodeles waltlii Michah. après coloration par la moutarde de quinacrine. Chromosoma (Berl.) 54, 61–68 (1976)Google Scholar
  5. Baldari, C.T., Amaldi, F.: DNA reassociation kinetics in relation to genome size in four amphibian species. Chromosoma (Berl.) 59, 13–22 (1976)Google Scholar
  6. Beçak, W., Beçak, M.L., Schreiber, G., Lavalle, D., Amorim, F.O.: Interspecific variability of DNA content in Amphibia. Experientia (Basel) 26, 204–206 (1970)Google Scholar
  7. Bianchi, N.O., Bianchi, M.S., Vidal-Rioja, L.: Heterochromatin late replication and secondary constrictions in the chromosome complement of Leptodactylus ocellatus. Caryologia (Firenze) 26, 397–403 (1973)Google Scholar
  8. Birnstiel, M.L., Sells, B.H., Purdom, I.F.: Kinetic complexity of RNA molecules. J. molec. Biol. 63, 21–39 (1972)Google Scholar
  9. Blair, W.F.: Genetic compatibility and species groups in U.S. toads (Bufo). Texas J. Sci. 11, 427–453 (1959)Google Scholar
  10. Blair, W.F.: Evolutionary relationships of North American toads of the genus Bufo: a progress report. Evolution (Lawrence, Kans.) 17, 1–16 (1963)Google Scholar
  11. Blair, W.F.: Characteristics of the testes. In: Evolution in the genus Bufo (W.F. Blair, ed.), pp. 324–328. Austin-London: University of Texas Press 1972Google Scholar
  12. Blair, W.F.: Evidence from hybridization. In: Evolution in the genus Bufo (W.F. Blair, ed.), pp. 196–232. Austin-London: University of Texas Press 1972Google Scholar
  13. Bogart, J.P.: Chromosome number difference in the amphibian genus Bufo: the Bufo regularis species group. Evolution (Lawrence,Kans.) 22, 42–45 (1968)Google Scholar
  14. Bogart, J.P.: Karyotypes. In: Evolution in the genus Bufo (W.F. Blair, ed.), pp. 171–195. Austin-London: University of Texas Press 1972Google Scholar
  15. Brown, D.D., Weber, C.S.: Gene linkage by RNA-DNA hybridization. I. Unique DNA sequences homologous to 4S RNA, 5S RNA and ribosomal RNA. J. molec. Biol. 34, 661–680 (1968)Google Scholar
  16. Brown, D.D., Wensink, P.C., Jordan, E.: Purification and some characteristics of 5S DNA from Xenopus laevis. Proc. nat. Acad. Sci. (Wash.) 3175–3179 (1971)Google Scholar
  17. Cei, J.M., Erspamer, V., Roseghini, M.: Biogenic amines. In: Evolution in the genus Bufo (W.F. Blair, ed.), pp. 233–243. Austin-London: University of Texas Press 1972Google Scholar
  18. Davidson, E.H., Amenson, C., Hough, B., Britten, R.J.: Interspersion of repetitive sequences in Xenopus DNA. Carnegie Inst. Wash. Year Book 71, 273–276 (1972)Google Scholar
  19. Davidson, E.H., Hough, B.R., Amenson, C.S., Britten, R.J.: General interspersion of repetitive with non-repetitive sequence elements in the DNA of Xenopus. J. molec. Biol. 77, 1–25 (1973)Google Scholar
  20. Dutrillaux, B., Grouchy, J. de, Finaz, C., Lejeune, J.: Mise en évidence de la structure fine des chromosomes humains par digestion enzymatique (pronase en particulier). C.R. Acad. Sci. (Paris) 273, 587–588 (1971)Google Scholar
  21. Engel, W., Zenzes, M.T., Schmid, M.: Activation of mouse ribosomal RNA genes at the 2-cell stage. Hum. Genet. 38, 57–63 (1977)Google Scholar
  22. Garcia Ruiz, I.R., Beçak, W.: Further studies on polyploid amphibians. V. C-banding in diploid and tetraploid species of Odontophrynus. Chromosoma (Berl.) 54, 69–74 (1976)Google Scholar
  23. Goin, O.B., Goin, C.J., Bachmann, K.: DNA and amphibian life history. Copeia (Wash.) 532–540 (1968)Google Scholar
  24. Goodpasture, C., Bloom, S.E.: Visualization of nucleolar organizer regions in mammalian chromosomes using silver staining. Chromosoma (Berl.) 53, 37–50 (1975)Google Scholar
  25. Greilhuber, J.: Why plant chromosomes do not show G-bands. Theor. Appl. Genet. 50, 121–124Google Scholar
  26. Griffiths, I.: The phylogeny of the Salientia. Biol. Rev. 38, 241–292 (1963)Google Scholar
  27. Guttman, S.I.: Evolution of blood proteins in the cosmopolitan toad genus Bufo. Ph. D. Thesis, Univ. Texas (1967)Google Scholar
  28. Hsu, T.C.: Heterochromatin pattern in metaphase chromosomes of Drosophila melanogaster. J. Hered. 62, 285–287 (1971)Google Scholar
  29. Hsu, T.C., Arrighi, F.E.: Distribution of constitutive heterochromatin in mammalian chromosomes. Chromosoma (Berl.) 34, 243–253 (1971)Google Scholar
  30. Hsu, T.C., Cooper, J.E.K., Mace, M.L., Brinkley, B.R.: Arrangement of centromeres in mouse cells. Chromosoma (Berl.) 34, 73–87 (1971)Google Scholar
  31. Hsu, T.C., Pathak, S., Chen, T.R.: The possibility of latent centromeres and a proposed nomenclature system for total chromosome and whole arm translocations. Cytogenet. Cell Genet. 15, 41–49 (1975)Google Scholar
  32. Hsu, T.C., Spirito, S.E., Pardue, M.L.: Distribution of 18+28S ribosomal genes in mammalian genomes. Chromosoma (Berl.) 53, 25–36 (1975)Google Scholar
  33. Inger, R.F.: Bufo of Eurasia. In: Evolution in the genus Bufo (W.F. Blair, ed.), pp. 102–118. Austin-London: University of Texas Press 1972Google Scholar
  34. Jalal, S.M., Clark, R.W., Hsu, T.C., Pathak, S.: Cytological differentiation of constitutive heterochromatin. Chromosoma (Berl.) 48, 391–403 (1974)Google Scholar
  35. Kongsuwan, K., Smyth, D.R.: Q-bands in Lilium and their relationship to C-banded heterochromatin. Chromosoma (Berl.) 60, 169–178 (1977)Google Scholar
  36. Lee, C.S., Collins, L.: Q- and C-bands in the metaphase chromosomes of Drosophila nasutoides. Chromosoma (Berl.) 61, 57–60 (1977)Google Scholar
  37. Lima-de-Faria, A.: Chromosome gradient and chromosome field in Agapanthus. Chromosoma (Berl.) 6, 330–370 (1954)Google Scholar
  38. Lima-de-Faria, A.: The specific location of ribosomal genes in the eukaryotic chromosome. In: Modern aspects of cytogenetics: constitutive heterochromatin in man (R.A. Pfeiffer, ed.). Symp. Med. Hoechst 6, pp. 39–44. Stuttgart-New York: Schattauer 1973Google Scholar
  39. Lima-de-Faria, A.: The chromosome field. I. Prediction of the location of ribosomal cistrons. Hereditas (Lund) 83, 1–22 (1976)Google Scholar
  40. Low, B.S.: Evolution in the genus Bufo: evidence from parathoid glands. Ph. D. Thesis, Univ. Texas (1967)Google Scholar
  41. Lubs, H., Hosteller, T., Ewing, L.: Cited in Paris Conference (1971): Standardization in human cytogenetics. Birth defects: original article series, vol. 8, No. 7. New York: The National Foundation 1972Google Scholar
  42. Martin, R.F.: Evidence from osteology. In: Evolution in the genus Bufo (W.F. Blair, ed.), pp. 37–70. Austin-London: University of Texas Press 1972Google Scholar
  43. Martin, W.F.: Evolution of vocalization in the genus Bufo. In: Evolution in the genus Bufo (W.F. Blair, ed.), pp. 279–309. Austin-London: University of Texas Press 1972Google Scholar
  44. Matsui, S.: Structural proteins associated with ribosomal cistrons in Xenopus laevis chromosomes. Exp. Cell Res. 88, 88–94 (1974)Google Scholar
  45. Miller, D.A., Dev, V.G., Tantravahi, R., Miller, O.J.: Suppression of human nucleolus organizer activity in mouse-human somatic hybrid cells. Exp. Cell Res. 101, 235–243 (1976)Google Scholar
  46. Miller, O.J., Miller, D.A., Dev., V.G., Tantravahi, R., Croce, C.M.: Expression of human and suppression of mouse nucleolus organizer activity in mouse-human somatic cell hybrids. Proc. nat. Acad. Sci. (Wash.) 73, 4531–4535 (1976)Google Scholar
  47. Morescalchi, A.: Comparative karyology of the Amphibia. Boll. Zool. 38, 317–320 (1971)Google Scholar
  48. Morescalchi, A.: Amphibia. In: Cytotaxonomy and vertebrate evolution (A.B. Chiarelli and E. Capanna, eds.), pp. 233–348. London-New York: Academic Press 1973Google Scholar
  49. Olmo, E.: Quantitative variations in the nuclear DNA and phylogenesis of the Amphibia. Caryologia (Firenze) 26, 43–68 (1973)Google Scholar
  50. Overton, K.M., Magenis, R.E., Brady, T., Chamberlin, J., Parks, M.: Cytogenetic darkroom magic: now you see them, now you don't. Amer. J. Hum. Genet. 28, 417–419 (1976)Google Scholar
  51. Pardue, M.L., Birnstiel, M.L.: Cytological localization of repeated gene sequences. In: Modern aspects of cytogenetics: constitutive heterochromatin in man (R.A. Pfeiffer, ed.), pp. 75–85. Stuttgart-New York: Schattauer 1973Google Scholar
  52. Pardue, M.L., Brown, D.D., Birnstiel, M.L.: Location of the genes for 5S ribosomal RNA in Xenopus laevis. Chromosoma (Berl.) 42, 191–203 (1973)Google Scholar
  53. Ragghianti, M., Bucci Innocenti, S., Mancino, G.: Bandeggiatura indotta da “C-, G- e Q-staining methods” e pattern di replicazione dei cromosomi di Triturus. Rend. Accad. naz. Lincei55, 764–770 (1973)Google Scholar
  54. Schmid, W.: Heterochromatin in mammals. Arch. Klaus-Stift. Vererb.-Forsch. 42, 1–60 (1967)Google Scholar
  55. Schmid, M., Krone, W.: The relationship of a specific chromosomal region to the development of the acrosome. Chromosoma (Berl.) 56, 327–347 (1976)Google Scholar
  56. Schweizer, D.: Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma (Berl.) 58, 307–324 (1976)Google Scholar
  57. Seabright, M.: The use of proteolytic enzymes for the mapping of structural rearrangements in the chromosomes of man. Chromosoma (Berl.) 36, 204–210 (1972)Google Scholar
  58. Sexsmith, E.: DNA values and karyotypes of Amphibia. Ph. D. Thesis, Dept. of Botany, University of Toronto 1968Google Scholar
  59. Stock, A.D., Mengden, G.A.: Chromosome banding pattern conservatism in birds and nonhomology of chromosome banding patterns between birds, turtles, snakes and amphibians. Chromosoma (Berl.) 50, 69–77 (1975)Google Scholar
  60. Straus, N.A.: Comparative DNA renaturation kinetics in amphibians. Proc. nat. Acad. Sci. (Wash.) 68, 799–802 (1971)Google Scholar
  61. Sumner, A.T.: A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75, 304–306 (1972)Google Scholar
  62. Tymowska, J.: Karyotype analysis of Xenopus tropicalis Gray, Pipidae. Cytogenet. Cell Genet. 12, 297–304 (1973)Google Scholar
  63. Tymowska, J.: A comparative study of the karyotypes of eight Xenopus species and subspecies possessing a 36-chromosome complement. Cytogenet. Cell Genet. 18, 165–181 (1977)Google Scholar
  64. Tymowska, J., Fischberg, M.: Chromosome complements of the genus Xenopus. Chromosoma (Berl.) 44, 335–342 (1973)Google Scholar
  65. Tymowska, J., Kobel, H.R.: Karyotype analysis of Xenopus muelleri (Peters) and Xenopus laevis (Daudin), Pipidae. Cytogenet. Cell Genet. 11, 270–278 (1972)Google Scholar
  66. Ullerich, F.-H.: Unterschiede im DNS-Gehalt der Genome von Bufo bufo und Bufo viridis. Z. Naturforsch. 20b, 720–722 (1965)Google Scholar
  67. Ullerich, F.-H.: Karyotyp und DNS-Gehalt von Bufo bufo, B. viridis, B. bufo x B. viridis und B. calamita (Amphibia, Anura). Chromosoma (Berl.) 18, 316–342 (1966)Google Scholar
  68. Ullerich, F.-H.: Weitere Untersuchungen über Chromosomenverhältnisse und DNS-Gehalt bei Anuren (Amphibia). Chromosoma (Berl.) 21, 345–368 (1967)Google Scholar
  69. Vosa, C.G.: Heterochromatic banding patterns in Allium. II. Heterochromatin variation in species of the paniculatum group. Chromosoma (Berl.) 57, 119–133 (1976)Google Scholar
  70. Weisblum, B.: Fluorescent probes of chromosomal DNA structure: three classes of acridines. Cold. Spr. Harb. Symp. quant. Biol. 38, 441–449 (1973)Google Scholar
  71. Weisblum, B., Haseth, de, P.L.: Quinacrine, a chromosome stain specific for deoxyadenylatedeoxythymidylate-rich regions in DNA. Proc. nat. Acad. Sci. (Wash.) 69, 629–632 (1972)Google Scholar
  72. Wolf, K., Quimby, M.C.: Amphibian cell culture: permanent cell line from the bullfrog (Rana catesbeiana). Science 114, 1578–1580 (1964)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • M. Schmid
    • 1
  1. 1.Abteilung HumangenetikUniversity of UlmUlmFederal Republic of Germany

Personalised recommendations