, Volume 92, Issue 2, pp 143–148 | Cite as

In situ hybridization confirms jumping nucleolus organizing regions in Allium

  • I. Schubert
  • U. Wobus


In situ hybridization with a 125I-rDNA clone from Vicia faba was performed against Allium cepa and three strains of top onion, which represent hybrids between A. cepa and A. fistulosum. In principle, the labelling patterns correspond to the patterns of the silver-stained nucleolus organizing regions (NORs) in the same species. This strongly supports the inference drawn from the Ag-NOR patterns that NORs can jump between terminal heterochromatin blocks of different Allium chromosomes in the parental species A. cepa as well as in their interspecific hybrids.


Developmental Biology Interspecific Hybrid Parental Species Labelling Pattern Heterochromatin Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnheim N, Krystal M, Schmickel R, Wilson G, Ryder O, Zimmer E (1980) Molecular evidence for genetic exchange among ribosomal genes on non-homologous chromosomes in man and apes. Proc Natl Acad Sci USA 77:7323–7527Google Scholar
  2. Childs G, Maxson R, Cohn RH, Kedes L (1981) Orphons: Dispersed genetic elements derived from tandem repetitive genes of eucaryotes. Cell 23:651–663Google Scholar
  3. Ilyin YV, Tchurikov NA, Ananiev EV, Ryskov AP, Yenikolopov GN, Limborska SA, Maleeva NE, Gvozdev VA, Georgiev GP (1978) Studies on the DNA fragments of mammals and Drosophila containing structural genes and adjacent sequences. Cold Spring Habor Symp Quant Biol 42:959–969Google Scholar
  4. Knälmann M, Burger E-C (1979) Degree of relatedness of ribosomal 18/25S RNA of Vicia species and Allium cepa. Cytobiologie 18:422–430Google Scholar
  5. Navashin M (1927) Changes in the number and form of chromosomes as a result of hybridization. Z Zellforsch Mikrosk Anat 6:195–233Google Scholar
  6. Navashin MS (1928) “Amphiplastie” — Eine neue karyologische Erscheinung. Proc Int Conf Genet 5:1148–1152Google Scholar
  7. Nicoloff H, Anastassova-Kristeva M, Rieger R, Künzel G (1979) ‘Nucleolar dominance’ as observed in barley translocation lines with specifically reconstructed SAT chromosomes. Theor Appl Genet 55:247–251Google Scholar
  8. Rieger R, Nicoloff H, Anastassova-Kristeva M (1979) ‘Nucleolar dominance’ in interspecific hybrids and translocation lines — A review. Biol Zentralbl 98:385–398Google Scholar
  9. Sato S (1981) Cytological studies on the satellited chromosomes of Allium cepa. Caryologia 34:431–440Google Scholar
  10. Schubert I (1984) Mobile nucleolus organizing regions (NORs) in Allium (Liliaceae s. lat.)? — Inferences from the specificity of silver staining. Plant Syst Evol 144:291–305Google Scholar
  11. Schubert I, Ohle H, Hanelt P (1983) Phylogenetic conclusions from Giemsa banding and NOR staining in top onions (Liliaceae). Plant Syst Evol 143:245–256Google Scholar
  12. Verma RC, Raina SN (1981) Cytogenetics of Crotalaria. V. Supernumerary nucleoli in C. agatiflora (Leguminosae). Genetica 56:75–80Google Scholar
  13. Yakura K, Tanifuji S (1983) Molecular cloning and restriction analysis of Eco-RI fragments of Vicia faba rDNA. Plant Cell Physiol 24:1327–1330Google Scholar
  14. Zakharov AF, Davudov AZ, Benjush VA, Egolina NA (1982) Polymorphisms of Ag-stained nucleolar organizer regions in man. Hum Genet 60:334–339Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • I. Schubert
    • 1
  • U. Wobus
    • 1
  1. 1.Zentralinstitut für Genetik und Kulturpflanzenforschung der AdW der DDRGaterslebenGerman Democratic Republic

Personalised recommendations