Chromosoma

, Volume 83, Issue 4, pp 507–521 | Cite as

Meiosis in Drosophila melanogaster

I. Chromosome identification and kinetochore microtubule numbers during the first and second meiotic divisions in males
  • Hsiu -Ping P. Lin
  • Jeffrey G. Ault
  • Kathleen Church
Article

Abstract

Individual bivalents or chromosomes have been identified in Drosophila melanogaster spermatocytes at metaphase I, anaphase I, metaphase II and anaphase II in electron micrographs of serial sections. Identification was based on a combination of chromosome volume analysis, bivalent topology, and kinetochore position. — Kinetochore microtubule numbers have been obtained for the identified chromosomes at all four meiotic stages. Average numbers in D. melanogaster are relatively low compared to reported numbers of other higher eukaryotes. There are no differences in kinetochore microtubule numbers within a stage despite a large (approximately tenfold) difference in chromosome volume between the largest and the smallest chromosome. A comparison between the two meiotic metaphases (metaphase I and metaphase II) reveals that metaphase I kinetochores possess twice as many microtubules as metaphase II kinetochores. — Other microtubules in addition to those that end on or penetrate the kinetochore are found in the vicinity of the kinetochore. These microtubules penetrate the chromosome rather than the kinetochore proper and are more numerous at metaphase I than at the other division stages.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, B.S., Carpenter, A.T.C.: Genetic analyses of sex chromosomal meiotic mutants in Drosophila melanogaster. Genetics 71, 255–286 (1972)Google Scholar
  2. Baker, B.S., Hall, J.C.: Meiotic mutants: genetic control of meiotic recombination and chromosome segregation. In: The genetics and biology of Drosophila, (M. Ashburner and E. Novitski, eds), vol. 1a, pp. 351–434. New York: Academic Press 1976Google Scholar
  3. Baker, B.S., Carpenter, A.T.C., Esposito, M.S., Esposito, R.E., Sandler, L.: The genetic control of meiosis. Ann. Rev. Genet. 10, 53–134 (1976)Google Scholar
  4. Bridges, C.B.: Nodisjunction as proof of the chromosomal theory of inheritance. Genetics 1, 1–52, 107–163 (1916)Google Scholar
  5. Cooper, K.W.: Meiotic conjunctive elements not involving chiasmata. Proc. nat. Acad, Sci. (Wash.) 52, 1248–1255 (1964)Google Scholar
  6. Cooper, K.W.: Normal spermatogenesis in Drosophila. In: Biology of Drosophila (M. Demerec, ed.), pp. 1–61. New York, London: Hafner 1965Google Scholar
  7. Forer, A., Brinkley, B.R.: Microtubule distribution in the anaphase spindle of primary spermatocytes of a crane fly (Nephrotoma suturalis). Canad. J. Genet. Cytol. 18, 503–519 (1977)Google Scholar
  8. Fuge, H.: Ultrastructure and function of the spindle apparatus microtubules and chromosomes during nuclear division. Protoplasma (Wien) 82, 289–320 (1974)Google Scholar
  9. Fuge, H.: Ultrastructure of mitotic cells. In: Mitosis, facts and questions. (M. Little, N. Petzelt, H. Ponstingl, D. Schroeter and H.P. Zimmerman, eds.), pp. 51–77, Berlin, Heidelberg, New York: Springer 1977Google Scholar
  10. Fuge, H.: Microtubule disorientation in anaphase half-spindles during autosome segregation in crane fly spermatocytes. Chromosoma (Berl.) 76, 309–328 (1980)Google Scholar
  11. Gassner, G.: Synaptinemal complexes in achiasmatic spermatogenesis of Bolbe nigra Giglio-Tos. (Mantoidea). Chromosome (Berl.) 26, 22–34 (1969)Google Scholar
  12. Grell, R.F.: Distributive pairing. In: The genetics and biology of Drosophila (M. Ashburner, and E. Novitski., eds.). vol 1a, pp. 435–486. New York: Academic Press 1976Google Scholar
  13. Hinton, T.: A comparative study of certain heterochromatic regions in the mitotic and salivary gland chromosomes of Drosophila melanogaster. Genetics 27, 119–127 (1942)Google Scholar
  14. Jensen, C., Bajer, A.: Spindle dynamics and arrangements of microtubules. Chromosoma (Berl.) 44, 73–89 (1973)Google Scholar
  15. Kaufmann, B.P.: Somatic mitoses of Drosophila melanogaster. J. Morph. 56, 125–155 (1934)Google Scholar
  16. Karnovsky, M.J.: A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27, 137a-138a (1965)Google Scholar
  17. LaFountain, J.R., Jr.: Birefringence and fine structure of spindles in spermatocytes of Nephrotoma suturalis at metaphase of first meiotic division. J. Ultrastruct. Res. 46, 268–278 (1974)Google Scholar
  18. Lindsley, D.L., Grell, E.H.: In: Genetic variations of Drosophila melanogaster. Carnegie Inst. Wash. publication no. 627 1967Google Scholar
  19. Luft, J.H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409 (1961)Google Scholar
  20. Maguire, M.P.: The need for a chiasma binder. J. theor. Biol. 48, 485–487 (1976)Google Scholar
  21. Maguire, M.P.: An indirect test for a role of the synaptonemal complex in chiasma maintenance. Exp. Cell Res. 112, 297–308 (1978)Google Scholar
  22. McGill, M., Brinkley, B.R.: Human chromosomes and centrioles as nucleating sites for in vitro assembly of microtubules from bovine brain tubulin. J. Cell Biol. 67, 189–199 (1975)Google Scholar
  23. Meyer, G.F.: Die Funktionsstrukturen des Y-Chromosoms in den Spermatocytenkernen von Drosophila hydei, D. neohydei, D. repleta und einigen anderen Drosophila-Arten. Chromosoma (Berl.) 14, 207–255 (1963)Google Scholar
  24. Moens, P.B.: Serial sectioning in electron microscopy. Proc. Canad. Fed. Biol. Soc. 13, 160 (1970)Google Scholar
  25. Moens, P.B.: Kinetochore microtubule numbers of different sized chromosomes. J. Cell Biol. 83, 556–561 (1979)Google Scholar
  26. Nicklas, R.B., Brinkley, B.R., Pepper, D.A., Kubai, D.K., Richards, G.K.: Electron microscopy of spermatocytes previously studied in life. Methods and some observations on micromanipulated chromosomes. J. Cell Sci. 35, 87–104 (1979)Google Scholar
  27. Peachy, L.D.: Thin sections: I. A study of section thickness and physical distortion produced during microtomy. J. biophys. biochem. Cytol. 4, 233–242 (1958)Google Scholar
  28. Pepper, D.A., Brinkley, B.R.: Microtubule initiation at kinetochores and centrosomes in lysed mitotic cells: inhibition of site specific nucleation by tubulin antibody. J. Cell Biol. 82, 585–591 (1979)Google Scholar
  29. Rasmussen, S.W.: Ultrastructural studies of spermatogenesis in D. melanogaster Meigen. Z. Zellforsch. 140, 125–144 (1973)Google Scholar
  30. Reynold, E.S.: The uses of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963)Google Scholar
  31. Riva, A.: A simple and rapid staining method for enhancing the contrast of tissues previously treated with uranyl acetate. J. Microscopie 19, 105–108 (1974)Google Scholar
  32. Rudkin, G.T.: Photometric measurements of individual metaphase chromosomes. In Vitro 1, 12–20 (1965)Google Scholar
  33. Sandler, L., Lindsley, D.L., Nicoletti, B., Trippa, G.: Mutants affecting meiosis in natural populations of Drosophila melanogaster. Genetics 60, 525–558 (1968)Google Scholar
  34. Stanley, H.P., Bowman, S.T., Romrell, L.J., Reed, S.C., Wilkinson, R.F.: Fine structure of normal spermatid differentiation in Drosophila melanogaster. J. Ultrastruct. Res. 41, 433–466 (1972)Google Scholar
  35. Tippit, D.H., Pickett-Heaps, J.D., Leslie, R.: Cell division in two large pennate diatoms Hantzschia and Nitzschia. III. A new proposal for kinetochore function during prometaphase. J. Cell Biol. 86, 402–416 (1980)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Hsiu -Ping P. Lin
    • 1
  • Jeffrey G. Ault
    • 1
  • Kathleen Church
    • 1
  1. 1.Department of ZoologyArizona State UniversityTempeUSA

Personalised recommendations