Chromosoma

, Volume 64, Issue 3, pp 207–217 | Cite as

Chromosomes of antelope squirrels (genus Ammospermophilus): A systematic banding analysis of four species with unusual constitutive heterochromatin

  • J. T. Mascarello
  • J. A. Mazrimas
Article

Abstract

The G- and C-banding patterns of mitotic chromosomes from four species of antelope squirrels (Ammospermophilus harrisi, interpres, leucurus and nelsoni) are discussed with special attention payed to the unusual quantities and position of constitutive heterochromatin. Heterochromatin appears to be responsible for the observation that cells from antelope squirrels contain over 70% more DNA than cells from another ground squirrel. A substantial fraction of this excess DNA consists of sequences that band as satellites in neutral CsCl or Cs2SO4-Ag+ density gradients. Interspecies similarities in the distribution of heterochromatin suggest that it has a function of some importance to these species and has therefore been conserved.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnason, U.: Comparative chromosome studies in Pinnipedia. Hereditas (Lund) 76, 179–226 (1974a)Google Scholar
  2. Arnason, U.: Comparative chromosome studies in Cetacea. Hereditas (Lund) 77, 1–36 (1974b)Google Scholar
  3. Atkin, N.B., Mattinson, G., Beçak, W., Ohno, S.: The comparative DNA content of 19 species of placental mammals, reptiles, and birds. Chromosoma (Berl.) 17, 10–10 (1965)Google Scholar
  4. Bachmann, K.: Genome size in mammals. Chromosoma (Berl.) 37, 85–93 (1972)Google Scholar
  5. Duffy, P.A.: Chromosome variation in Peromyscus: a new mechanism. Science 176, 1333–1334Google Scholar
  6. Golumb, H.M., Bahr, G.F.: Electron microscopy of human interphase nuclei. Determination of total dry mass and DNA-packing ratio. Chromosoma (Berl.) 46, 233–245 (1974)Google Scholar
  7. Gropp, A., Natarajan, A.T.: Karyotype and heterochromatin pattern of the Algerian hedgehog. Cytogenetics 11, 259–269 (1972)Google Scholar
  8. Hatch, F.T., Bodner, A.J., Mazrimas, J.A., Moore, D.H., II: Satellite DNA and cytogenetic evolution. DNA quantity, satellite DNA and karyotypic variations in kangaroo rats (genus Dipodomys). Chromosoma (Berl.) 58, 155–168 (1976)Google Scholar
  9. Hatch, F.T., Mazrimas, J.A.: Satellite DNAs in the kangaroo rat. Biochim. biophys. Acta (Amst.) 224, 291–294 (1970)Google Scholar
  10. Hatch, F.T., Mazrimas, J.A.: Fractionation and characterization of satellite DNAs of the kangaroo rat (Dipodomys ordii). Nucleic Acid Res. 1, 559–575 (1974)Google Scholar
  11. Hsu, T.C.: A possible function of constitutive heterochromatin: The bodyguard hypothesis. Genetics 79, 137–150 (1975)Google Scholar
  12. Ifft, J.B., Voet, D.H., Vinograd, J.: Determination of density distributions and density gradients in binary solutions at equilibrium in the ultacentrifuge. J. phys. Chem. 65, 1138–1145 (1961)Google Scholar
  13. Kay, E.R.M., Simmons, N.S., Dounce, A.L.: An improved preparation of sodium desoxyribonucleate. J. Amer. chem. Soc. 74, 1724–1726 (1952)Google Scholar
  14. Kulu, D.D.: Evolution and cytogenetics. In: Mammals of the sea (S.H. Ridgway, ed.), pp. 503–527. Springfield, Ill.: Thomas 1972Google Scholar
  15. Mascarello, J.T., Hsu, T.C.: Chromosome evolution in woodrats, genus Neotoma (Rodentia: Cricetidea). Evolution (Lawrence, Kans.) 30, 152–169 (1976)Google Scholar
  16. Mascarello, J.T., Stock, A.D., Pathak, S.: Conservation in the arrangement of genetic material in rodents. J. Mammal. 55, 831–834 (1974)Google Scholar
  17. Mascarello, J.T., Warner, J.W.: Chromosome variation in the plains woodrat: a pericentric inversion involving constitutive heterochromatin. Experientia (Basel) 30, 90–91 (1974)Google Scholar
  18. Mayall, B.H.: Deoxyribonucleic acid cytophotometry of stained human leukocytes. I. Differences among cell types. J. Histochem. Cytochem. 17, 249–257 (1969)Google Scholar
  19. Mayall, B.H., Mendelsohn, M.L.: Deoxyribonucleic acid cytophotometry of stained human leukocytes. II. The mechanical scanner of CYDAC, the theory of scanning photometry and the magnitude of residual errors. J. Histochem. Cytochem. 18, 383–407 (1970)Google Scholar
  20. Miklos, G.L.G., Nankivell, R.N.: Telomeric satellite DNA functions in regulating recombination. Chromosoma (Berl.) 56, 143–167 (1976)Google Scholar
  21. Pathak, S., Hsu, T.C., Arrighi, F.E.: Chromosomes of Peromyscus (Rodentia, Cricetidae). IV. The role of heterochromatin in karyotypic evolution. Cytogenet. Cell Genet. 12, 315–326 (1973)Google Scholar
  22. Patton, J.L.: Chromosome studies of certain pocket mice, genus Perognathus (Rodentia: Heteromyidae). J. Mammal. 48, 27–37 (1967)Google Scholar
  23. Seabright, M.: A rapid banding technique for human chromosomes. Lancet 1971 II, 971–972Google Scholar
  24. Stefos, K., Arrighi, F.E.: Heterochromatic nature of W chromosome in birds. Exp. Cell Res. 68, 228–231 (1971)Google Scholar
  25. Wurster-Hill, D.H., Gray, C.W.: The interrelationships of chromosome banding patterns in procyonids, viverrids, and felids. Cytogenet. Cell Genet. 15, 306–331 (1975)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • J. T. Mascarello
    • 1
    • 2
  • J. A. Mazrimas
    • 1
    • 2
  1. 1.Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeley
  2. 2.Biomedical Sciences Division, Lawrence Livermore LaboratoryUniversity of CaliforniaLivermoreUSA
  3. 3.Department of Biology, B-022University of California at San DiegoLa JollaUSA

Personalised recommendations